精英家教網 > 高中數學 > 題目詳情

【題目】設函數,,其中.若函數在區間上有且僅有一個零點,則實數的取值范圍是__

【答案】

【解析】

gx)=fx)﹣4mxm=0得fx)=4mx+m,分別作出兩個函數的圖象,利用數形結合建立不等式關系進行求解即可.

由題可得.作函數yfx)的圖象,如圖所示

函數gx)零點的個數函數yfx)的圖象與直線y=4mx+m交點的個數.

當直線y=4mx+m過點(1,1)時,;當直線y=4mx+m與曲線(﹣1<x<0)相切時,(m<0),

4mx+m

4mx+m

即﹣x=(4mx+m)(x+1),

整理得4mx2+(5m+1)x+m=0,

則判別式△=(5m+1)2﹣16m2=0,且﹣10

即9m2+10m+1=0,

可求得m=﹣1或m

m時,﹣10不成立,

故此時m=﹣1,

根據圖象可知當mm=﹣1時,函數gx)在區間(﹣1,1)上有且僅有一個零點.

故答案為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知內角的角平分線.

(1)用正弦定理證明: ;

2)若,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用.出現這樣的統計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統的文明古國.禮儀之邦的地位不相符.某小區為了提高小區內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計在40名讀書者中年齡分布在的人數;

(2)求40名讀書者年齡的平均數和中位數;

(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是,且各階段通過與否相互獨立.

1)求該選手在復賽階段被淘汰的概率;

2)設該選手在競賽中回答問題的個數為,求的分布列與均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在圓上任取一點,過點軸的垂線段為垂足.當點在圓上運動時,線段的中點形成軌跡

1)求軌跡的方程;

2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為,準線為是拋物線上的兩個動點,且滿足.設線段的中點上的投影為,則的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,過點的直線與橢圓交于軸上方的,兩點,且.

(Ⅰ)求橢圓的離心率;

(Ⅱ)(。┣笾本的斜率;

(ⅱ)設點與點關于坐標原點對稱,直線上有一點的外接圓上,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】德陽中學數學競賽培訓共開設有初等代數、初等幾何、初等數論和微積分初步共四門課程,要求初等代數、初等幾何都要合格,且初等數論和微積分初步至少有一門合格,則能取得參加數學競賽復賽的資格,現有甲、乙、丙三位同學報名參加數學競賽培訓,每一位同學對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,


初等代數

初等幾何

初等數論

微積分初步

合格的概率





1)求甲同學取得參加數學競賽復賽的資格的概率;

2)記表示三位同學中取得參加數學競賽復賽的資格的人數,求的分布列及期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓與直線都經過點.直線平行,且與橢圓交于兩點,直線軸分別交于兩點.

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视