【題目】下列命題中不正確命題的個數是( )
①過空間任意一點有且僅有一個平面與已知平面垂直
②過空間任意一條直線有且僅有一個平面與已知平面垂直
③過空間任意一點有且僅有一個平面與已知的兩條異面直線平行
④過空間任意一點有且僅有一條直線與已知平面垂直
A.1 B.2
C.3 D.4
科目:高中數學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發芽數
,作了初步處理,得到下表:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 9 |
發芽率 | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發芽的種子數分別為,求事件“
均小于26”的概率;
(2)請根據3月1日至3月5日的數據,求出關于
的線性回歸方程
,并預報3月份晝夜溫差為14度時實驗室每天100顆種子浸泡后的發芽(取整數值).
附:回歸方程中的斜率和截距最小二乘法估計公式分別為:
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響,已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學生選修的課程門數和沒有選修的課程門數的乘積.
(1)記“函數為
上的偶函數”為事件
,求事件
的概率;
(2)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資公司擬投資開發某項新產品,市場評估能獲得10~1 000萬元的投資收益.現公司準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不低于1萬元,同時不超過投資收益的20%.
(1) 設獎勵方案的函數模型為f(x),試用數學語言表述公司對獎勵方案的函數模型f(x)的基本要求;
(2) 公司能不能用函數f(x)=+2作為預設的獎勵方案的模型函數?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形.
(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結論;
(Ⅲ)在(Ⅱ)的情形下,設正方體ABCD—A1B1C1D1的棱CC1的中點為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com