精英家教網 > 高中數學 > 題目詳情
(2008•靜安區一模)下列以行列式表達的結果中,與sin(α-β)相等的是( 。
分析:根據行列式的運算法則對四個選項一一進行化簡運算得結果.
解答:解:∵sin(α-β)=sinαcosβ-cosαsinβ,
對于A:
.
sinα   -sinβ
cosα  cosβ
.
=sinαcosβ+cosαsinβ;故錯;
對于B:
.
cosβ   sinα
sinβ    cosα
.
=cosαcosβ-sinαsinβ,故錯;
對于C:
.
sinα    sinβ
cosα   cosβ
.
=sinαcosβ-cosαsinβ,正確;
對于D:
.
cosα   -sinα
sinβ     cosβ
.
=cosαcosβ-sinαsinβ,故錯.
故選C.
點評:本題考查行列式的運算,三角函數的變換公式、和角及二倍角的公式等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•靜安區一模)(理)設
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)
是平面上的兩個向量,若向量
a
+
b
a
-
b
相互垂直,
(1)求實數λ的值;
(2)若
a
b
=
4
5
,且tanα=
4
3
,求α的值(結果用反三角函數值表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•靜安區一模)執行下面的程序框圖,如果輸入的k=50,那么輸出的S=
2548
2548

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•靜安區一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的兩個向量.
(1)試用α、β表示
a
b
;
(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(結果用反三角函數值表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•靜安區一模)計算:
lim
n→∞
(2n-
4n2+2n-1
2n+2
)
=
1
1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视