【題目】設m,n∈R,定義在區間[m,n]上的函數f(x)=log2(4﹣|x|)的值域是[0,2],若關于t的方程( )|t|+m+1=0(t∈R)有實數解,則m+n的取值范圍是 .
【答案】[1,2)
【解析】解:∵函數f(x)=log2(4﹣|x|)的值域是[0,2],
∴1≤4﹣|x|≤4,
∴0≤|x|≤3,
∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;
又∵關于t的方程( )|t|+m+1=0(t∈R)有實數解,
∴m=﹣(( )|t|+1),
∵1<( )|t|+m+1≤2,
∴﹣2≤m<﹣1,
則n=3,
則1≤m+n<2,
即答案為:[1,2).
【考點精析】認真審題,首先需要了解函數的值域(求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的),還要掌握函數的零點(函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知平面上的動點P(x,y)及兩定點A(﹣2,0),B(2,0),直線PA,PB的斜率分別是 k1 , k2且 .
(1)求動點P的軌跡C的方程;
(2)設直線l:y=kx+m與曲線C交于不同的兩點M,N. ①若OM⊥ON(O為坐標原點),證明點O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足 ,證明直線l過定點,并求出這個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知圓C1的參數方程為 (φ為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2
cos(θ﹣
). (Ⅰ)將圓C1的參數方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數,當s+t取最小值
時,m、n對應的點(m,n)是雙曲線
一條弦的中點,則此弦所在的直線方程為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com