(本小題滿分12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2
,
·
=
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的方程為
,點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點
的坐標;
(2)設直線交橢圓
于
、
兩點,交直線
于點
.若
,證明:
為
的中點;
(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個交點
、
滿足
,寫出求作點
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點為F
(1,0),離心率為
,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F的直線交橢圓C于A,B兩點,若△PAB的面積為
,求直線AB的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,以O為極點,
軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為
,曲線
的參數方程為
,(
為參數,
)。
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個公共點時,求實數的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知點為拋物線
:
的焦點,
為拋物線
上的點,且
.
(Ⅰ)求拋物線的方程和點
的坐標;
(Ⅱ)過點引出斜率分別為
的兩直線
,
與拋物線
的另一交點為
,
與拋物線
的另一交點為
,記直線
的斜率為
.
(。┤,試求
的值;
(ⅱ)證明:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com