【題目】如圖是某學校一名籃球運動員在五場比賽中所得分數的莖葉圖,則該運動員在這五場比賽中得分的方差為 .
(注:方差 ,其中
為x1 , x2 , …,xn的平均數)
【答案】6.8
【解析】解:∵根據莖葉圖可知這組數據的平均數是 =11
∴這組數據的方差是 [(8﹣11)2+(9﹣11)2+(10﹣11)2+(13﹣11)2+(15﹣11)2]
= [9+4+1+4+16]
=6.8
所以答案是:6.8.
【考點精析】根據題目的已知條件,利用莖葉圖和極差、方差與標準差的相關知識可以得到問題的答案,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少;標準差和方差越大,數據的離散程度越大;標準差和方程為0時,樣本各數據全相等,數據沒有離散性;方差與原始數據單位不同,解決實際問題時,多采用標準差.
科目:高中數學 來源: 題型:
【題目】袋中有外形、質量完全相同的紅球、黑球、黃球、綠球共12個.從中任取一球,得到紅球的概率是 ,得到黑球或黃球的概率是
,得到黃球或綠球的概率也是
.
(1)試分別求得到黑球、黃球、綠球的概率;
(2)從中任取一球,求得到的不是“紅球或綠球”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b﹣1(a≠0).
(1)當a=1,b=﹣2時,求函數f(x)的不動點;
(2)若對任意實數b,函數f(x)恒有兩個相異的不動點,求a的范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標是函數f(x)的不動點,且A、B兩點關于直線y=kx+ 對稱,求b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)已知為實數,函數
,函數
.
(1)當時,令
,求函數
的極值;
(2)當時,令
,是否存在實數
,使得對于函數
定義域中的任意實數
,均存在實數
,有
成立,若存在,求出實數
的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)某學校為了支持生物課程基地研究植物生長,計劃利用學校空地建造一間室內面積為900m2的矩形溫室,在溫室內劃出三塊全等的矩形區域,分別種植三種植物,相鄰矩形區域之間間隔1m,三塊矩形區域的前、后與內墻各保留 1m 寬的通道,左、右兩塊矩形區域分別與相鄰的左右內墻保留 3m 寬的通道,如圖.設矩形溫室的室內長為(m),三塊種植植物的矩形區域的總面積為
(m2).
(1)求關于
的函數關系式;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a、b、c是常數,則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分14分)如圖,我市有一個健身公園,由一個直徑為2km的半圓和一個以為斜邊的等腰直角三角形
構成,其中
為
的中點.現準備在公園里建設一條四邊形健康跑道
,按實際需要,四邊形
的兩個頂點
分別在線段
上,另外兩個頂點
在半圓上,
,且
間的距離為1km.設四邊形
的周長為
km.
(1)若分別為
的中點,求
長;
(2)求周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=x3+x(x∈R),當 時,f(msinθ)+f(1﹣m)>0恒成立,則實數m的取值范圍是( )
A.(﹣∞,1)
B.(﹣∞,0)
C.(﹣∞, )
D.(0,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某社區居民的家庭年收入所年支出的關系,隨機調查了該社區5戶家庭,得到如下統計數據表:
收入x (萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y (萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
據上表得回歸直線方程 =
x+
,其中
=0.76,
=
﹣
,據此估計,該社區一戶收入為15萬元家庭年支出為( )
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com