【題目】已知函數.
(1)求 的單調區間;
(2)若曲線 與直線
只有一個交點, 求實數
的取值范圍.
【答案】(1)當時,單調遞增區間是
,當
時,增區間是
,減區間是
,當
時,增區間是
,減區間是
;(2)
.
【解析】
試題分析:(1),然后對
、
和
分三種情況進行討論求得相應單調區間;(2)由題得方程
,只有一個根,設
,則
有兩個零點
,即
,且
,不妨設
為極大值,
為極小值
原命題等價于
且
,或者
且
;又
,設
為減函數,又
時
時
大于
或小于
, 由
知,
只能小于
.
試題解析:(1),當
時,
上
單調遞增; 當
時,
為
增區間,
為
減區間; 當
為
增區間,
為
減區間.
(2)由題得方程,只有一個根,設
,則
,因為
,所以
有兩個零點
,即
,且
,不妨設
,所以
在
單調遞增, 在
單調遞減,
為極大值,
為極小值,方程
只有一個根等價于
且
,或者
且
,又
,設
,所以
,所以
為減函數,又
,所以
時
時
,所以
大于
或小于
, 由
知,
只能小于
,所以由二次函數
性質可得
,所以
.
科目:高中數學 來源: 題型:
【題目】微信紅包是一款可以實現收發紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環境下搶到的紅包個數進行統計,得到如下數據:
手機品牌 型號 | I | II | III | IV | V |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機品牌 紅包個數 | 優 | 非優 | 合計 |
甲品牌(個) | |||
乙品牌(個) | |||
合計 |
(1)如果搶到紅包個數超過5個的手機型號為“優”,否則為“非優”,請完成上述2×2列聯表,據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?
(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規模宣傳銷售.
①求在型號I被選中的條件下,型號II也被選中的概率;
②以表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量
的分布列及數學期望
.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國慶期間,某旅行社組團去風景區旅游,若旅行團人數在 人或
人以下,每人需交費用為
元;若旅行團人數多于
人,則給予優惠:每多
人,人均費用減少
元,直到達到規定人數
人為止.旅行社需支付各種費用共計
元.
Ⅰ 寫出每人需交費用 關于人數
的函數;
Ⅱ 旅行團人數為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形為梯形,
,
平面
,
,
,
,
為
中點.
(1)求證:平面平面
;
(2)線段上是否存在一點
,使
平面
?若有,請找出具體位置,并進行證明:若無,請分析說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家分析發現“喜歡空間想象”與“性別”有關,某數學興趣小組為了驗證此結論,從全體組員中按分層抽樣的方法抽取50名同學(男生30人、女生20人),給每位同學立體幾何題、代數題各一道,讓各位同學自由選擇一道題進行解答,選題情況統計如下表:(單位:人)
立體幾何題 | 代數題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關?
(2)經統計得,選擇做立體幾何題的學生正答率為,且答對的學生中男生人數是女生人數的5倍,現從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記抽取的兩人中答對的人數為
,求
的分布列及數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了參加師大附中第30界田徑運動會的開幕式,高三年級某6個班聯合到集市購買了6根竹竿,作為班旗的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(Ⅰ)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;
(Ⅱ)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com