(本小題滿分12分)
如圖,已知四棱錐P—ABCD的底面是直角梯形,∠ABC=∠BCD =90o,AB=BC=PB=PC=2CD=2,側面PBC⊥底面ABCD,O是BC的中點,AO交BD于E.
(1)求證:PA⊥BD;
(2)求二面角P—DC—B的大。
本小題考查空間里的線線、線面垂直關系,二面角的求法以及空間想象能力.
解法一:(1)證明:∵PB=PC,O為BC的中點,
∴PO⊥BC.
又∵平面PBC⊥平面ABCD,
平面PBC∩平面ABCD=BC,
∴PO⊥平面ABCD.在梯形ABCD中,
可得Rt△ABO≌Rt△BCD.
∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90o,
即AO⊥BD.
∵PA在平面ABCD內的射影為AO,∴PA⊥BD…………………………6分
(2)解:∵DC⊥BC,且平面PBC⊥平面ABCD,
∴DC⊥平面PBC.
∵PC平面PBC,∴DC⊥PC.
∴∠PCB為二面角P—DC—B的平面角.
∵△PCB是等邊三角形,
∴∠PCB=60o,即面角P—DC—B的大小為60o……………………12分
解法二:(1)因為△PBC是等邊三角形,O是BC的中點,
由側面PBC⊥底面ABCD得PO⊥底面ABCD.
以BC中點O為原點,以BC所在直線為x軸,
過點與AB平行的直線為y軸,建立如圖所示的
空間直角坐標系O—xyz.
(1)證明:在直角梯形中,AB=BC=2.
CD=1,在等邊三角形中PBC中,PO=.
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,).
∴=(-2,-1,0),
=(1,-2,-
).
∵·
=(-2)×1+(-1)×(-2)+0×(-
)=0,
∴⊥
,即PA⊥BD………………………………………………6分
(2)解:取PC的中點N,則N(-,0,
).于是
=(-
,0,
).
∵C(-1,0,0),∴=(0,1,0),
=(1,0,
),
∴·
=(-
)×1+0×0+
×
=0
∴⊥平面PDC.顯然
=(0,0,
),且
⊥平面ABCD.
∴,
所夾角等于所求二面角的平面角.
∵·
=(-
)×0+0×0+
×
=
,
||=
,|
|=
,∴cos<
,
>=
.
∴二面角P—DC—B的大小為60o…………………………………………12分
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com