精英家教網 > 高中數學 > 題目詳情
(2013•嘉定區一模)動點P(x,y)到點F(0,1)的距離與它到直線y+1=0的距離相等,則動點P的軌跡方程為
x2=4y
x2=4y
分析:由拋物線的定義,可得點P位于以F為焦點、直線y=-1為準線的拋物線上.因此設P的軌跡方程為x2=2px(p>0),根據拋物線的簡單幾何性質即可求出點P的軌跡方程.
解答:解:∵直線l:y+1=0即y=-1,而點P(x,y)到點F(0,1)的距離等于P到直線l的距離
∴點P位于以F為焦點、直線l:y=-1為準線的拋物線上,
因此,設P的軌跡方程為x2=2px,(p>0)
可得
1
2
p
=1,解得p=2,2p=4
∴動點P的軌跡方程為x2=4y.
故答案為:x2=4y
點評:本題給出動點滿足的條件,求該點的軌跡方程,著重考查了圓錐曲線的定義和軌跡方程的求法等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•嘉定區一模)書架上有3本不同的數學書,2本不同的語文書,2本不同的英語書,將它們任意地排成一排,則左邊3本都是數學書的概率為
1
35
1
35
(結果用分數表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)若雙曲線x2-
y2
k
=1
的焦點到漸近線的距離為2
2
,則實數k的值是
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)如圖所示的算法框圖,若輸出S的值是90,那么在判斷框(1)處應填寫的條件是
k≤8
k≤8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內,任取橢圓上一點P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)設等差數列{an}的前n項和為Sn,且a5+a13=34,S3=9.數列{bn}的前n項和為Tn,滿足Tn=1-bn
(1)求數列{an}的通項公式;
(2)寫出一個正整數m,使得
1
am+9
是數列{bn}的項;
(3)設數列{cn}的通項公式為cn=
an
an+t
,問:是否存在正整數t和k(k≥3),使得c1,c2,ck成等差數列?若存在,請求出所有符合條件的有序整數對(t,k);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视