精英家教網 > 高中數學 > 題目詳情

【題目】已知某公司生產某款手機的年固定成本為40萬元,每生產1萬只還需另投入16萬元.設該公司一年內共生產該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關于年產量(萬只)的函數解析式;

(2)當年產量為多少萬只時,該公司在該款手機的生產中所獲得的利潤最大?并求出最大利潤.

【答案】(1,(2)當時, 取得最大值6104萬元

【解析】試題分析:(1)利用利潤等于收入減去成本,可得分段函數解析式;

2)分段求出函數的最大值,比較可得結論.

試題解析:(1)當時,

時,

所以

2時,

所以;

時,

由于,

當且僅當,即時,等號成立,

所以取最大值為5760

綜合①②知,當時, 取得最大值6104萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直角三角形ABC中角A,B,C對邊長分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數的解析式可化為y=3cos(2x﹣ );
③圖象關于x=﹣ 對稱;④圖象關于點(﹣ ,0)對稱.
其中正確的是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解下列不等式:
(1)2x2+x﹣1<0
(2)<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中,為常數且)在處取得極值.

(Ⅰ)當時,求的單調區間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量,設

(1)求函數的解析式及單調遞增區間;

(2)在中,分別為內角的對邊,且,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若在區間上有且只有一個極值點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2015年12月,華中地區數城市空氣污染指數“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數據如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關關系,求關于的線性回歸方程;(提示數據:

(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規定:當一天內的濃度平均值在內,空氣質量等級為優;當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優或者為良,則應控制當天車流量不超過多少萬輛?(結果以萬輛為單位,保留整數)參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個單調遞增區間可以是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视