【題目】公元263年左右,我國數學家劉徽發現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數據: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
科目:高中數學 來源: 題型:
【題目】已知函數 (0<φ<π,ω>0)為偶函數,且函數y=f(x)圖象的兩相鄰對稱軸間的距離為
.
(Ⅰ)求 的值;
(Ⅱ)將函數y=f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的上頂點M與左、右焦點F1、F2構成三角形MF1F2面積為
,又橢圓C的離心率為
.
(1)求橢圓C的方程;
(2)橢圓C的下頂點為N,過點T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F兩點.若△TMN的面積是△TEF的面積的k倍,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l經過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點,且 ,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點A,B,且 ,求k的值;
(2)若 ,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點分別為C,D,求證:直線CD過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側,則直線l的傾斜角的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,
)
D.(0, )∪(
,π)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com