精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若不等式的解集為,求實數的值;
(2)在(1)的條件下,若存在實數n使成立,求實數m的取值范圍。

(1);(2)

解析試題分析:(1)由|2x-a|+a≤6得|2x-a|≤6-a,再利用絕對值不等式的解法去掉絕對值,結合條件得出a值;
(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),化簡φ(n)的解析式,若存在實數n使f(n)≤m-f(-n)成立,只須m大于等于φ(n)的最小值即可,從而求出實數m的取值范圍.解:(1)由|2x-a|+a≤6得|2x-a|≤6-a,
∴a-6≤2x-a≤6-a,即a-3≤x≤3,
∴a-3=-2,
∴a=1.(5分)
(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),
則φ(n)=|2n-1|+|2n+1|+2=
∴φ(n)的最小值為4,故實數m的取值范圍是[4,+∞).(10分)
考點:絕對值不等式的解法
點評:本題考查絕對值不等式的解法,體現了等價轉化的數學思想,利用分段函數化簡函數表達式是解題的關鍵

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)判斷的奇偶性;
(2)確定函數上是增函數還是減函數?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)的定義域為(0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當x2>x1>0時,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,
(1)討論的單調區間;
(2)若對任意的,且,有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數)的圖象如圖.根據圖象寫出:

(1)函數的最大值;
(2)使值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值
(1)求的值與函數的單調區間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數)是偶函數
(1)求的值;
(2)設,若函數的圖像有且只有一個公共點,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知奇函數上是增函數,且
① 確定函數的解析式;
② 解不等式<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a為實數,函數f(x)=(x2+1)(xa),若f′(-1)=0,求函數yf(x)在上的最大值和最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视