精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,其中.

(Ⅰ) 當a=-1時,求證:

(Ⅱ) 對任意,存在,使成立,求a的取值范圍.(其中e是自然對數的底數,e=2.71828…)

【答案】(Ⅰ)詳見解析(Ⅱ)

【解析】試題分析:

(1)利用題意證得函數的最大值為 即可證得結論;

(2)首先利用分析法真理要證明的不等式,然后構造函數證明結論即可.

試題解析:

(Ⅰ)當 a=-1時, x>-1),

,令,得

時, , 單調遞增;當時, 單調遞減.

故當時,函數取得極大值,也為最大值,所以

所以, ,得證.

(Ⅱ)不等式,

即為

.故對任意,存在,使恒成立,

所以

,則,

,知對于恒成立,

上的增函數,于是

對于恒成立,所以上的增函數.

所以

,即,

a≥0時, 上的減函數,且其值域為R,可知符合題意.

a<0時, ,由可得,

,則p(x)在上為增函數;由,則p(x)在上為減函數,所以

從而由,解得

綜上所述,a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列各組函數中,表示同一函數的是(
A.f(x)= ,g(x)=( 2
B.f(x)=(x﹣1)0 , g(x)=1
C.f(x) ,g(x)=x+1
D.f(x)= ,g(t)=|t|

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在圓柱中,A,BC,D是底面圓的四等分點,O是圓心,A1AB1B,C1C與底面ABCD垂直,底面圓的直徑等于圓柱的高.

(Ⅰ)證明:BCAB1

(Ⅱ)(。┣蠖娼A1 - BB1 - D的大;

(ⅱ)求異面直線AB1BD所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—4:坐標系與參數方程

在平面直角坐標系xOy中,曲線C1的參數方程為t為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數;如果沒有,請說明理由;

(Ⅲ)設是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指由企業在校園、公交站點、商業區、公共服務區等場所提供的自行車單車共享服務,由于其依托“互聯網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.

(Ⅰ) 求圖中的值;

(Ⅱ) 已知滿意度評分值在[90,100]內的男生數與女生數的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取2人進行座談,求所抽取的兩人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的參數方程為(θ為參數),直線l的參數方程為(t為參數).

(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;

(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查“五一”小長假出游選擇“有水的地方”是否與性別有關,現從該市“五一”出游旅客中隨機抽取500人進行調查,得到如下2×2列聯表:(單位:人)

選擇“有水的地方”

不選擇“有水的地方”

合計

90

110

200

210

90

300

合計

300

200

500

(Ⅰ)據此樣本,有多大的把握認為選擇“有水的地方”與性別有關;

(Ⅱ)若以樣本中各事件的頻率作為概率估計全市“五一”所有出游旅客情況,現從該市的全體出游旅客(人數眾多)中隨機抽取3人,設3人中選擇“有水的地方”的人數為隨機變量X,求隨機變量X的數學期望和方差.

附臨界值表及參考公式:

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

,n=a+b+c+d.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|(a﹣1)x2﹣x+2=0}有且只有一個元素,則a=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社區為豐富居民節日活動,組織了迎新春象棋大賽,已知報名的選手情況統計如下表:

組別

總計

中年組

91

老年組

16

已知中年組女性選手人數是僅比老年組女性選手人數多2人.若對中年組和老年組分別利用分層抽樣的方法抽取部分報名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

)求表格中的數據;

)若從選出的中年組的選手中隨機抽取兩名進行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视