精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=﹣x2+2ex+m﹣1,g(x)=x+ (x>0).
(1)若y=g(x)﹣m有零點,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)﹣f(x)=0有兩個相異實根.

【答案】
(1)解:∵g(x)=x+ ≥2 =2e;

(當且僅當x= ,即x=e時,等號成立)

∴若使函數y=g(x)﹣m有零點,

則m≥2e;

故m的取值范圍為[2e,+∞)


(2)解:令F(x)=g(x)﹣f(x)

=x+ +x2﹣2ex﹣m+1,

F′(x)=1﹣ +2x﹣2e=(x﹣e)( +2);

故當x∈(0,e)時,F′(x)<0,x∈(e,+∞)時,F′(x)>0;

故F(x)在(0,e)上是減函數,在(e,+∞)上是增函數,

故只需使F(e)<0,

即e+e+e2﹣2e2﹣m+1<0;

故m>2e﹣e2+1


【解析】(1)由基本不等式可得g(x)=x+ ≥2 =2e,從而求m的取值范圍;(2)令F(x)=g(x)﹣f(x)=x+ +x2﹣2ex﹣m+1,求導F′(x)=1﹣ +2x﹣2e=(x﹣e)( +2);從而判斷函數的單調性及最值,從而確定m的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程為,曲線的參數方程為,( 為參數).

(1)將兩曲線化成普通坐標方程;

(2)求兩曲線的公共弦長及公共弦所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,幾何體EFABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,ABCD,ADDC,AD=2,AB=4ADF=90°

求證:ACFB

求二面角EFBC的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對二次函數f(x)=ax2+bx+c(a為非零整數),四位同學分別給出下列結論,其中有且只有一個結論是錯誤的,則錯誤的結論是(
A.﹣1是f(x)的零點
B.1是f(x)的極值點
C.3是f(x)的極值
D.點(2,8)在曲線y=f(x)上

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓右頂點與右焦點的距離為,短軸長為

(I)求橢圓的方程;

)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為求直線AB的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為(
A.y=2sin(2x+ )??
B.y=2sin(2x+ )??
C.y=2sin( )??
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設m∈R,復數z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數單位.
(1)當m為何值時,復數z是虛數?
(2)當m為何值時,復數z是純虛數?
(3)當m為何值時,復數z所對應的點在復平面內位于第四象限?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{bn}滿足bn=3bn1+2(n≥2),b1=1.數列{an}的前n項和為Sn , 滿足Sn=4an+2
(1)求證:{bn+1}是等比數列并求出數列{bn}的通項公式;
(2)求數列{an}的通項公式和前n項和公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足記數列的前項和為

1)求證:數列為等比數列,并求其通項;

2)求;

3)問是否存在正整數,使得成立?說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视