【題目】已知函數f(x)= ,若存在實數x1 , x2 , x3 , x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 則x1x2x3x4取值范圍是( )
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x﹣2)2+y2=4相交于A、B兩點,并且弦長|AB|= 2 ,則
+
﹣
的最小值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數y=f(x+2)是偶函數;③當x∈(0,2]時,f(x)=ex﹣ ,a=f(﹣5),b=f(
).c=f(
),則a,b,c的大小關系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量 =(sin2ωx,cos2ωx),
=(cosφ,sinφ),其中|φ|<
,ω>0,函數f(x)=
的圖象在y軸右側的第一個最高點(即函數取得最大值的點)為
,在原點右側與x軸的第一個交點為
.
(Ⅰ)求函數f(x)的表達式;
(Ⅱ)在△ABC中,角A′B′C的對邊分別是a′b′c′若f(C)=﹣1, ,且a+b=2
,求邊長c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地.”問此人第4天和第5天共走了( )
A.60里
B.48里
C.36里
D.24里
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣
=1(a>0,b>0)的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( )
A.(1, )
B.( ,+∞)
C.( ,2)
D.(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)= ﹣
(x為實常數).
(1)當a=1時,求函數φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在區間[ ]上有解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的離心率為
,若圓x2+y2=a2被直線x﹣y﹣
=0截得的弦長為2
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得
為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com