【題目】已知函數f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當a=1時,求f(x)的單調區間;
(2)若函數f(x)在(0, )上無零點,求a最小值.
【答案】
(1)解:當a=1時,f(x)=x﹣1﹣2lnx,
則f′(x)=1﹣ ,由f′(x)>0,得x>2,
由f′(x)<0,得0<x<2,
故f(x)的單調減區間為(0,2],單調增區間為[2,+∞).
(2)因為f(x)<0在區間(0, )上恒成立不可能,
故要使函數f(x)在(0, )上無零點,只要對任意的x∈(0,
),f(x)>0恒成立,
即對x∈(0, ),a>2﹣
恒成立.
令l(x)=2﹣ ,x∈(0,
),
則l′(x)= ,
再令m(x)=2lnx+ ﹣2,x∈(0,
),
則m′(x)=﹣ +
=
<0,
故m(x)在(0, )上為減函數,于是m(x)>m(
)=2﹣2ln2>0,
從而l(x)>0,于是l(x)在(0, )上為增函數,
所以l(x)<l( )=2﹣4ln2,
故要使a>2﹣ 恒成立,只要a∈[2﹣4ln2,+∞),
綜上,若函數f(x)在(0, )上無零點,則a的最小值為2﹣4ln2.
【解析】(1)當a=1時,對函數進行求導,得出單調區間;(2)通過分析不難得出要使得f(x)在給定區間無零點,只需要f(x)在給定區間恒大于零,進行參變分離,構造函數,求導,得出a的最小值.
科目:高中數學 來源: 題型:
【題目】設數列{an}是各項均為正數的等比數列,其前n項和為Sn , 且a1a5=64,S5﹣S3=48.
(1)求數列{an}的通項公式;
(2)設有正整數m,l(5<m<l),使得am , 5a5 , al成等差數列,求m,l的值;
(3)設k,m,l∈N*,k<m<1,對于給定的k,求三個數 5ak , am , al經適當排序后能構成等差數列的充要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C 的參數方程為 (α為參數),以直角坐標系原點O 為極點,x 軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C 的極坐標方程;
(Ⅱ)設l1:θ= ,l2:θ=
,若l 1、l2與曲線C 相交于異于原點的兩點 A、B,求△AOB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產不同規格的一種產品,根據檢測標準,其合格產品的質量y(g)與尺寸x(mm)之間近似滿足關系式y=axb(a,b為大于0的常數).現隨機抽取6件合格產品,測得數據如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對數據作了初步處理,相關統計量的值如表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據所給數據,求y關于x的回歸方程;
(Ⅱ)按照某項指標測定,當產品質量與尺寸的比在區間( ,
)內時為優等品.現從抽取的6件合格產品中再任選3件,記ξ為取到優等品的件數,試求隨機變量ξ的分布列和期望.
附:對于一組數據(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計分別為 =
,
=
﹣
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《數書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是( 。
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式V= )
A.2寸
B.3寸
C.4寸
D.5寸
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司對應聘人員進行能力測試,測試成績總分為150分.下面是30位應聘人員的測試成績的測試成績:64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求應聘人員的測試成績的樣本平均數 (保留小數點后兩位);
(2)根據以上數據完成下面莖葉圖:
應聘人員的測試成績 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
(3)由莖葉圖可以認為,應聘人員的測試成績Z服從正態分布N(μ,σ2),其中μ近似為樣本平均數 ,σ2近似為樣本方差s2 , 其中s2=18.872 , 利用該正態分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,
P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學人力資源部計劃2016年招聘2名數學教師,共5名應聘者進入最后課堂實錄環節.5名數學組評審專家給出評分如表:
評審專家/應聘老師 | 1 | 2 | 3 | 4 | 5 |
評審專家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
評審專家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
評審專家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
評審專家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
評審專家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依據去掉一個最高分和一個最低分規則計算應聘老師成績,試確定最終應聘成功的2名數學老師的序號;
(Ⅱ)在課堂實錄環節,每名應聘老師都需要從5名評審專家中隨機選取2名進行點評,且每名應聘老師的選擇互不影響,設X表示評審專家A進行點評的次數,求X的分布列以及數學期望;
(Ⅲ)記評審專家A與評審專家B給出的評分的方差分別為 ,試比較
與
的大。ㄖ恍鑼懗鼋Y論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:數列{an}的前n項和Sn=an2+bn+c(a≠0);命題q:數列{an}是等差數列.則p是q的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com