【題目】已知拋物線:
,過點
的直線
交
于
,
兩點,過點
,
分別作
的切線,兩切線相交于點
.
(1)記直線,
的斜率分別為
,
,證明:
為定值;
(2)記的面積為
,求
的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點,
是棱
上的點,
,
,
.
(1)若為
的中點,求證:
面
;
(2)若二面角為
,設
,試確定
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學校放寒假,寒假結束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉播的時間作了一次調查,得到如下頻數分布表:
收看時間(單位:小時) | ||||||
收看人數 | 14 | 30 | 16 | 28 | 20 | 12 |
(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據頻數分布表補全列聯表:
男 | 女 | 合計 | |
體育達人 | 40 | ||
非體育達人 | 30 | ||
合計 |
并判斷能否有的把握認為該校教職工是否為“體育達人”與“性別”有關;
(2)在全!绑w育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數為,求的
分布列與數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數學家洛薩克拉茨在
年世界數學家大會上公布的一個猜想:任給一個正整數
,如果
是偶數,就將它減半;如果
為奇數就將它乘
加
,不斷重復這樣的運算,經過有限步后,最終都能夠得到
,得到
即終止運算,己知正整數
經過
次運算后得到
,則
的值為( )
A.或
B.
或
C.
D.
或
或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三十二班同學設計了一個如圖所示的“蝴蝶形圖案”(陰影區域)來預示在6月的高考中,同學們展翅高飛,其中是過拋物線
的焦點
的兩條弦,且
,點
為
軸上一點,記
,其中
為銳角.
(1)求拋物線的方程;
(2)當“蝴蝶形圖案”的面積最小時,求的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com