精英家教網 > 高中數學 > 題目詳情
已知三個不等式:①x2-4x+3<0;②x2-6x+8>0;③2x2-8x+m≤0.要使同時滿足①式和②式的所有x的值都滿足③式,則實數m的取值范圍是( 。
分析:聯立不等式組求解滿足①②的x的取值范圍,根據滿足①式和②式的所有x的值都滿足③式可得不等式2x2-8x+m≤0對于x∈(1,2)上恒成立,列式后可求解m的范圍.
解答:解:由
x2-4x+3<0
x2-6x+8>0
,得1<x<2.
若同時滿足①式和②式的所有x的值都滿足③式,
說明不等式2x2-8x+m≤0對于x∈(1,2)上恒成立,
12-8×1+m≤0
22-8×2+m≤0
,解得m≤6.
故選C.
點評:本題考查了一元二次不等式的解法,考查了數學轉化思想方法,訓練了“三個二次”的結合,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知三個不等式:①x2-4x+3<0; ②x2-6x+8>0; ③2x2-8x+m≤0.要使同時滿足①式和②式的所有x的值都滿足③式,則實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三個不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同時滿足①和②的所有x的值都滿足③,的實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三個不等式①x2-4x+3<0②x2-6x+8<0③2x2-9x+m<0要使同時滿足①和②的所有x的值都滿足③,則實數m的取值范圍是
m≤9
m≤9

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三個不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同時滿足①和②的所有x的值都滿足③,則實數m的取值范圍是___________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视