如圖所示,曲線段OMB是函數f(x)=x2(0<x<6)的圖像,BA^x軸于A,曲線段OMB上一點M(t,f(t))處的切線PQ交x軸于P,交線段AB于Q,
(1)試用t表示切線PQ的方程;
(2)試用t表示出DQAP的面積g(t);若函數g(t)在(m,n)上單調遞減,試求出m的最小值;
(3)若SDQAPÏ[,64],試求出點P橫坐標的取值范圍.
(1)設點M(t,t2),又f/(x)=2x,∴ 過點M的切線PQ的斜率k=2t ∴ 切線PQ的方程為:y=2tx-t2 (2)由(1)可求得:P( ∴ 由于g¢(t)= 考慮到0<t<6,∴ 4<t<6,∴ 函數g(t)的單調減區間是(4,6),因此m的最小值為4. (3)由(2)知,g(t)在區間(4,6)上遞減,∴ 此時SDQAPÎ(g(6),g(4))=(54,64) 令g¢(t)>0,則0<t<4,∴ g(t)在區間(0,4)上遞增,SDQAPÎ(g(0),g(4))=(0,64) 又g(4)=64 ∴ g(t)的值域為(0,64) 由 ∴ ∴ 點P的橫坐標Î[
|
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)試用t表示切線PQ的方程;
(2)試用t表示△QAP的面積g(t),若函數g(t)在(m,n)上單調遞減,試求出m的最小值;
(3)若S△QAP∈[,64],試求出點P橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖所示,曲線段OMB是函數f(x)=x2(0<x<6=的圖象,BA⊥x軸于A,曲線段OMB上一點M(t,f(t))處的切線PQ交x軸于P,交線段AB于Q,⑴試用t表示切線PQ的方程;⑵試用t表示出△QAP的面積g(t);若函數g(t)在(m,n)上單調遞減,試求出m的最小值;⑶若S△QAP∈[],試求出點P橫坐標的取值范圍
查看答案和解析>>
科目:高中數學 來源:2006年高考第一輪復習數學:14.5 導數的綜合問題(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com