精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線)的焦點為,上一動點,點,以線段為直徑作.時,的面積為3.

1)求的方程;

2)是否存在垂直于軸的直線,使得所截得的弦長為定值?若存在,求的方程;若不存在,說明理由.

【答案】12)存在;直線

【解析】

1,設,所以,,故不妨設,根據面積計算得到,得到答案.

2)設直線,被圓所截得的弦長為,,故,代入化簡得到,得到答案.

1)由題意得,,

依題意,當圓時,因為為直徑,所以,即.

,所以,又,解得,故不妨設,

因為,又,得

由題意得,,即,解得(舍去)

.

2)設直線,被圓所截得的弦長為.

因為,所以點的距離為,

又圓的半徑,根據垂徑定理有,

,化簡得,

代入上式得,,其中

故當且僅當時,無論取何值,恒有.

所以存在直線被圓所截得的弦長恒為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.

1)求證:四邊形是菱形;

2)若點在線段上,且平面,,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然對數的底數) .

1)若處的取得極值為1,求的值;

2時,討論函數的極值;

3)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果一個棱錐的底面是正方形,且頂點在底面內的射影是底面的中心,那么這樣的棱錐叫正四棱錐.若一正四棱錐的體積為18,則該正四棱錐的側面積最小時,以下結論正確的是( ).

A.棱的高與底邊長的比為B.側棱與底面所成的角為

C.棱錐的高與底面邊長的比為D.側棱與底面所成的角為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數學水平,也印證了我國古代音律與歷法的密切聯系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數據(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續減小,其正切值及對應的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區仍然存在封建傳統思想,頭胎的男女情況可能會影響生二孩的意愿,現隨機抽取某地200戶家庭進行調查統計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.

1)完成下列列聯表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數的分布列及數學期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設離心率為3,實軸長為1的雙曲線)的左焦點為,頂點在原點的拋物線的準線經過點,且拋物線的焦點在軸上.

(1)求拋物線的方程;

(2)若直線與拋物線交于不同的兩點,且滿足,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯表:

優秀

合格

總計

男生

6

女生

18

合計

60

已知在該班隨機抽取1人測評結果為優秀的概率為.

1)完成上面的列聯表;

2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?

3)現在如果想了解全校學生在該維度的表現情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.

附:

0.25

0.10

0.025

1.323

2.706

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,(其中e為自然對數的底數),若關于x的方程恰有5個相異的實根,則實數a的取值范圍為________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视