精英家教網 > 高中數學 > 題目詳情
已知點S是正三角形ABC所在平面外的一點,且SA=SB=SC.SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點,試判斷SG與平面DEF的位置關系,并給予證明.

分析:如下圖,觀察圖形,即可判定SG∥平面DEF,要證明結論成立,只需證明SG與平面DEF內的一條直線平行.觀察圖形可以看出:連結CG與DE相交于H,連結FH,FH就是適合題意的直線.怎樣證明SG∥FH?只需證明H是CG的中點.

證明:連結CG交DE于點H,

∵DE是△ABC的中位線,

∴DE∥AB.

    在△ACG中,D是AC的中點,且DH∥AG,

∴H為CG的中點.

∵FH是△SCG的中位線,

∴FH∥SG.

    又SG平面DEF,FH平面DEF,

∴SG∥平面DEF.

點評:此題中線面平行的證明應用了線面平行的判定定理,這需要在已知平面內找到一條與已知直線平行的直線.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•青島一模)已知點M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請說明理由.

查看答案和解析>>

科目:高中數學 來源:河北省正定中學2011-2012學年高二下學期第二次考試數學文科試題 題型:044

已知點M在橢圓D:上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為的正三角形.

(Ⅰ)求橢圓D的方程;

(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若=2,求直線l的斜率;

(Ⅲ)過點G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|·|GK|=3|RF1|·|F1S|的直線GK是否存在?請說明理由.

查看答案和解析>>

科目:高中數學 來源:山東省模擬題 題型:解答題

已知點M 在橢圓D :上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為的正三角形,
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足的直線GK是否存在?請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012年山東省青島市高考數學一模試卷(文科)(解析版) 題型:解答題

已知點M在橢圓D:=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视