【題目】已知橢圓C:的離心率為
,長半軸長為短軸長的b倍,A,B分別為橢圓C的上、下頂點,點
.
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為
,準線為
.已知以
為圓心,半徑為4的圓與
交于
、
兩點,
是該圓與拋物線
的一個交點,
.
(1)求的值;
(2)已知點的縱坐標為
且在
上,
、
是
上異于點
的另兩點,且滿足直線
和直線
的斜率之和為
,試問直線
是否經過一定點,若是,求出定點的坐標,否則,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
(
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現有兩種方案:
方案①:以為母線,將A作為圓柱的側面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;
方案②:以為側棱,將A作為正四棱柱的側面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與
或
垂直)作為正四棱柱的兩個底面.
(1)設B,C都是正方形,且其內切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設的長為
dm,則當
為多少時,能使按方案②制成的正四棱柱的體積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C是圓上異于A、B的點,PO垂直于圓O所在的平面,且PO=OB,BC=2,點E在線段PB上,則CE+OE的最小值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為
,現以極點
為原點,極軸為
軸的非負半軸建立平面直角坐標系,曲線
的參數方程為
(
為參數).
(1)求直線的直角坐標方程和曲線
的普通方程;
(2)若曲線為曲線
關于直線
的對稱曲線,點
分別為曲線
、曲線
上的動點,點
坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.
(1)設P是上的一點,且AP⊥BE,求∠CBP的大。
(2)當AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com