【題目】如圖,半徑為的圓形紙板內有一個相同圓心的半徑為
的小圓,現將半徑為
的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內,則硬幣與小圓無公共點的概率為( )
A. B.
C.
D.
【答案】D
【解析】由題意可得,硬幣要落在紙板內,硬幣圓心距離紙板圓心的距離應該小于4.硬幣與小圓無公共點,硬幣圓心距離小圓圓心要大于2,先求出硬幣落在紙板上的面積,然后再求解硬幣落下后與小圓沒交點的區域的面積,代入古典概率的計算公式可求
解答:解:記“硬幣落下后與小圓無公共點”為事件A
硬幣要落在紙板內,硬幣圓心距離紙板圓心的距離應該小于4,其面積為16π
無公共點也就意味著,硬幣的圓心與紙板的圓心相距超過2cm
以紙板的圓心為圓心,作一個半徑2cm的圓,硬幣的圓心在此圓外面,則硬幣與半徑為1cm的小圓無公共點
所以有公共點的概率為4/16
無公共點的概率為P(A)=1-4/16=3/4
故答案為D
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,四邊形
是菱形,
,
,且
,
交于點
,
是
上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為
,若
為
的中點,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:
甲說:“或
作品獲得一等獎”
乙說:“作品獲得一等獎”
丙說:“,
兩項作品未獲得一等獎”
丁說:“作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平的限制,會產生一些次品,根據經驗知道,其次品率P與日產量x(萬件)之間大體滿足關系: .(注:次品率=次品數/生產量,如P=0.1表示每生產10件產品,有1件為次品,其余為合格品).已知每生產1萬件合格的元件可以盈利2萬元,但每生產1萬件次品將虧損1萬元,故廠方希望定出合適的日產量.
(1)試將生產這種儀器的元件每天的盈利額T(萬元)表示為日產量x(萬件)的函數;
(2)當日產量x為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(A>0,|φ|< )其中的圖象如圖所示,為了得到g(x)=cos(2x﹣
)的圖象,只需將f(x)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國內某知名連鎖店分店開張營業期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該分店經理對開業前天參加抽獎活動的人數進行統計,
表示開業第
天參加抽獎活動的人數,得到統計表格如下:
經過進一步統計分析,發現與
具有線性相關關系.
(1)若從這天中隨機抽取兩天,求至少有
天參加抽獎人數超過
的概率;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
,并估計若該活動持續
天,共有多少名顧客參加抽獎.
參考公式: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,點
是橢圓
上的點,離心率
.
(1)求橢圓的方程;
(2)點在橢圓
上,若點
與點
關于原點對稱,連接
并延長與橢圓
的另一個交點為
,連接
,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com