【題目】給出下列命題:
用反證法證明命題“設a,b,c為實數,且
,
,則
,
,
”時,要給出的假設是:a,b,c都不是正數;
若函數
在
處取得極大值,則
或
;
用數學歸納法證明
,在驗證
成立時,不等式的左邊是
;
數列
的前n項和
,則
是數列
為等比數列的充要條件;
上述命題中,所有正確命題的序號為______.
科目:高中數學 來源: 題型:
【題目】若對于曲線f(x)=-ex-x(e為自然對數的底數)的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實數a的取值范圍為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖象向右平移
個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面不垂直于平面
,那么平面
內一定不存在直線垂直于平面
.
D.若直線不平行于平面
,且
不在平面
內,則在平面
內不存在與
平行的直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
.
(1)若直線經過拋物線
的焦點,求拋物線
的準線方程;
(2)若斜率為-1的直線經過拋物線的焦點
,且與拋物線
交于
,
兩點,當
時,求拋物線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標準方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,
底面
,點
分別為
的中點,且異面直線
和
所成的角的大小為
.
(1)求證:平面平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校在年的自主招生考試成績中隨機抽取
名學生的筆試成績,按成績分組:第
組
,第
組
,第
組
,第
組
,第
組
得到的頻率分布直方圖如圖所示
分別求第
組的頻率;
若該校決定在第
組中用分層抽樣的方法抽取
名學生進入第二輪面試,
已知學生甲和學生乙的成績均在第
組,求學生甲和學生乙同時進入第二輪面試的概率;
根據直方圖試估計這
名學生成績的平均分.(同一組中的數據用改組區間的中間值代表)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com