已知,直線
,
為平面上的動點,過點
作
的垂線,垂足為點
,且
.
(1)求動點的軌跡曲線
的方程;
(2)設動直線與曲線
相切于點
,且與直線
相交于點
,試探究:在坐標平面內是否存在一個定點
,使得以
為直徑的圓恒過此定點
?若存在,求出定點
的坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線的距離為3.
(1)求橢圓的方程;
(2)設橢圓與直線相交于不同的兩點M、N.當
時,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.
(1)若點的橫坐標為
,求直線
的斜率;
(2)記△的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的左焦點為
,過點
的直線交橢圓于
,
兩點.當直線
經過橢圓的一個頂點時,其傾斜角恰為
.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設線段的中點為
,
的中垂線與
軸和
軸分別交于
兩點,
記△的面積為
,△
(
為原點)的面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設,
、
是橢圓
上關于
軸對稱的任意兩個不同的點,連結
交橢圓
于另一點
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線與
軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,設點
(
),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 過
、
分別作直線
、
,使
,
.
(1)求動點的軌跡
的方程;
(2)在直線上任取一點
做曲線
的兩條切線,設切點為
、
,求證:直線
恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線
的斜率的倒數成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設是橢圓
上的兩點,已知向量
,若
且橢圓的離心率
,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的短軸長等于焦距,橢圓C上的點到右焦點
的最短距離為
.
(1)求橢圓C的方程;
(2)過點且斜率為
(
>0)的直線
與C交于
兩點,
是點
關于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com