精英家教網 > 高中數學 > 題目詳情
(坐標系與參數方程選做題) 在直角坐標系中圓C的參數方程為
x=2cosθ
y=2+2sinθ
(θ為參數),則圓C的普通方程為
 
,以原點O為極點,以x軸正半軸為極軸建立極坐標系,則圓C的圓心極坐標為
 
分析:(1)欲將曲線C化為普通方程,只須要消去參數θ即可,利用三角函數中的平方關系即可消去參數θ.
(2)欲求極坐標系下的極坐標方程,利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得直角坐標系即可.
解答:解:(1)∵曲線C:
x=2cosθ
y=2+2sinθ
(θ為參數),
∴2cosθ=x,2sinθ=y-2,兩式平方相加得:
x2+(y-2)2=4.即為曲線C化為普通方程.
(2)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換得:
ρ2-4ρsinθ=0,
即:ρ=4sinθ,即為極坐標系下的極坐標方程.
故答案為:x2+(y-2)2=4;ρ=4sinθ.
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)以原點為極點,x軸的正半軸為極軸,單位長度一致的坐標系下,已知曲線C1的參數方程為
x=2cosθ+3
y=2sinθ
(θ為參數),曲線C2的極坐標方程為ρsinθ=a,則這兩曲線相切時實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為
2
,
π
4
2
,
π
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點M的極坐標為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)(坐標系與參數方程選做題)已知在極坐標系下,點A(1,
π
3
),B(3,
3
),O是極點,則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題)在極坐標系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標方程為
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视