【題目】將正整數1,2,…,10填于正五角星的十個頂點處,使得每條直線上所填四個數之和相等,問:這種填數方案是否存在?若存在,請給出填數方案的個數(經過旋轉或對稱之后能重合的方案視為同一種方案);若不存在,請說明理由.
【答案】見解析
【解析】
若存在滿足要求的填數方案,則每條直線上的四個數之和為.
如圖,令五角星外頂點所填數分別為,
,…,
,
對應的內頂點所填數分別為,
,…,
.
則(
)此處下角標取模5非負剩余.
若是一種填數方案,作互補變換
,則
也是一種不同的填數方案.
注意到,10必須與1、2均共線,9必須與1共線.
否則,10所在的兩條直線上的數之和,矛盾.
若1填在內頂點處,不妨設,再由對稱性,不妨設
.
由,
,
,
知,
,且
.
經驗證,當時,方案不存在.
若1填在外頂點處,不妨設.
若10填在內頂點處,則作上述互補變換,便得到一個有1填在內頂點處的方案.
于是,10也填在外頂點處.
又,于是
或
.
不妨假設,
,經驗證,此時的填數方案也不存在.
綜上,不存在滿足要求的填數方案.
科目:高中數學 來源: 題型:
【題目】4支足球隊進行單循環比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環比賽結束,以獲勝的場次數作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結論中正確的是( )
A.恰有四支球隊并列第一名為不可能事件B.有可能出現恰有三支球隊并列第一名
C.恰有兩支球隊并列第一名的概率為D.只有一支球隊名列第一名的概率為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校矩形的航天知識競賽中,參與競賽的文科生與理科生人數之比為1:3,且成績分布在范圍內,規定分數在80以上(含80)的同學獲獎,按文理科用分層抽樣的放發抽取200人的成績作為樣本,得到成績的頻率分布直方圖.
(Ⅰ)填寫下面的列聯表,能否有超過95%的把握認為“獲獎與學生的文理科有關”;
(Ⅱ)將上述調查所得的頻率視為概率,現從參賽學生中,任意抽取3名學生,記“獲獎”學生人數為,求
的分布列及數學期望.
附表及公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px的焦點為F,準線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設點M在此拋物線上,且|MF|=3,若O為坐標原點,求△OFM的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.
方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.
方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.
(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;
(2)若某顧客獲得抽獎機會.
①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;
②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率為
,其左焦點到點
的距離為
,不過原點O的直線
與C交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求k的值;
(3)求面積取最大值時直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com