精英家教網 > 高中數學 > 題目詳情

已知直線.若存在實數使得一條曲線與直線有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出四條曲線方程:①;②;③;④;則其中直線的“絕對曲線”有          (        )

A.①④    B.②③    C.②④    D.②③④

 

【答案】

D

【解析】

試題分析:由題意直線表示斜率為且過定點(1,1)的直線.(1)曲線①是由左右兩支射線構成:時,是斜率為2且過點(1,0)的射線;時,是斜率為-2且過點(1,0)的射線.作圖可知:當,直線僅與曲線①右支射線有一個交點;當時,直線與曲線①無交點;當時,直線僅與曲線①左支射線有一個交點.所以直線與曲線①最多只有一個交點,不符題意,故曲線①不是直線的“絕對曲線”.(2)因為定點(1,1)在曲線②上,所以直線與曲線②恒有交點,設曲線②與直線的兩交點為、,易知 ,聯立直線與曲線②方程,化簡得:.

,.,從而可知當且僅當時直線與曲線②僅一個交點.兩邊平方,化簡得:.設,則,,且是連續函數,所以在(0,2)上有零點,即方程在(0,2)上有根,且在(0,2)上曲線②與直線有兩個不同的交點.故存在實數使得曲線②與直線兩個不同交點為端點的線段長度恰好等于,故曲線②是直線的“絕對曲線”.(3)曲線③表示圓心在(1,1)且半徑為1的圓,它與直線兩個交點為端點的線段長度恒為2,為2或-2時滿足題意,故曲線③是直線的“絕對曲線”.(4)因為定點(1,1)在曲線④上,所以直線與曲線④恒有交點,設曲線④與直線的兩交點為、,易知 ,聯立直線與曲線④方程,化簡得:,

,,從而可知當且僅當時直線與曲線④僅一個交點.兩邊平方,化簡得:.,,且是連續函數,所以上有零點,即方程上有根,且在上曲線④與直線有兩個不同的交點.故存在實數使得曲線④與直線兩個交點為端點的線段長度恰好等于,故曲線④是直線的“絕對曲線”.

考點:曲線與直線的方程、函數的零點

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,點A、B分別為雙曲線C實軸的左端點和虛軸的上端點,點F1、F2分別為雙曲線C的左、右焦點,點M、N是雙曲線C的右支上不同兩點,點Q為線段MN的中點.已知在雙曲線C上存在一點P,使得
PA
+
PB
+
PF2
=(
3
-3)
OP

(Ⅰ)求雙曲線C的離心率;
(Ⅱ)設a為正常數,若點Q在直線y=2x上,求直線MN在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若存在實常數k和b,使得函數f(x)和g(x)對其定義域上的任意實數x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對數的底數).
(1)求F(x)=h(x)-φ(x)的極值;
(2)函數h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若存在實常數k和b,使函數f(x)和g(x)對其定義域上的任意實數x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為
y=2
e
x-e
y=2
e
x-e

查看答案和解析>>

科目:高中數學 來源: 題型:

若存在實常數k和b,使得函數F(x)和G(x)對其公共定義域上的任意實數x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數h(x)=x2,m(x)=2elnx(e為自然對數的底數),φ(x)=x-2,d(x)=-1.
有下列命題:
①f(x)=h(x)-m(x)在x∈(0,
e
)
遞減;
②h(x)和d(x)存在唯一的“隔離直線”;
③h(x)和φ(x)存在“隔離直線”y=kx+b,且b的最大值為-
1
4

④函數h(x)和m(x)存在唯一的隔離直線y=2
e
x-e

其中真命題的個數( 。

查看答案和解析>>

科目:高中數學 來源:2014屆遼寧省高二下學期階段性測試理科數學試卷 (解析版) 題型:解答題

若存在實常數,使得函數對其定義域上的任意實數分別滿足:,則稱直線的“隔離直線”.已知,為自然對數的底數).

(1)求的極值;

(2)函數是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视