【題目】已知橢圓,
為橢圓的左、右焦點,點
在直線
上且不在
軸上,直線
與橢圓的交點分別為
和
,
為坐標原點.
設直線
的斜率為
,證明:
問直線
上是否存在點
,使得直線
的斜率
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形
所在的平面,
為
的中點,
,四邊形
為矩形,線段
交
于點
.
(1)求證:平面
;
(2)求二面角的正弦值;
(3)在線段上是否存在一點
,使得
與平面
所成角的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的兩個焦點
,
,設
,
分別是橢圓
的上、下頂點,且四邊形
的面積為
,其內切圓周長為
.
(1)求橢圓的方程;
(2)當時,
,
為橢圓
上的動點,且
,試問:直線
是否恒過一定點?若是,求出此定點坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的兩個焦點
,
,設
,
分別是橢圓
的上、下頂點,且四邊形
的面積為
,其內切圓周長為
.
(1)求橢圓的方程;
(2)當時,
,
為橢圓
上的動點,且
,試問:直線
是否恒過一定點?若是,求出此定點坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校研究性學習小組對該校高三學生的視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如下直方圖:
年級名次/是否近視 | 1-50 | 951-1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
(1)若直方圖中后四組的頻數成等差數列,試估計全年級視力在5.0以下的人數;
(2)學習小組成員發現,學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到如上述表格中數據,根據表中的數據,能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系;
(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數為X,求X的分布列和數學期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com