【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C: ,過點
的直線l的參數方程為:
(t為參數),直線l與曲線C分別交于M、N兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線l的普通方程;
(Ⅱ)若| PM |,| MN |,| PN |成等比數列,求a的值.
科目:高中數學 來源: 題型:
【題目】設公差大于0的等差數列{an}的前n項和為Sn,已知S3=15,且a1,a4,a13成等比數列,記數列 的前n項和為Tn.
(Ⅰ)求Tn;
(Ⅱ)若對于任意的n∈N*,tTn<an+11恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校400名學生在一次百米賽跑測試中,成績全部都在12秒到17秒之間,現抽取其中50個樣本,將測試結果按如下方式分成五組:第一組,第二組
,…,第五組
,如圖所示的是按上述分組方法得到的頻率分布直方圖.
(1)請估計該校400名學生中,成績屬于第三組的人數;
(2)請估計樣本數據的中位數(精確到0.01);
(3)若樣本第一組中只有一名女生,其他都是男生,第五組則只有一名男生,其他都是女生,現從第一、第五組中各抽取2名同學組成一個特色組,設其中男同學的人數為,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名大學生是否愛好某項運動,得到列聯表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由K2=,得K2=
≈7.8.
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A. 有99%以上的把握認為“愛好該項運動與性別有關”
B. 有99%以上的把握認為“愛好該項運動與性別無關”
C. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某校九年級1 600名學生的體能情況,隨機抽查了部分學生,測試1分鐘仰臥起坐的成績(次數),將數據整理后繪制成如圖所示的頻率分布直方圖,根據直方圖的數據,下列結論錯誤的是( )
A. 該校九年級學生1分鐘仰臥起坐的次數的中位數為26.25
B. 該校九年級學生1分鐘仰臥起坐的次數的眾數為27.5
C. 該校九年級學生1分鐘仰臥起坐的次數超過30次的約有320人
D. 該校九年級學生1分鐘仰臥起坐的次數少于20次的約有32人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“扶貧幫困”是中華民族的傳統美德,某校為幫扶困難同學,采用如下方式進行一次募捐:在不透明的箱子中放入大小均相同的白球七個,紅球三個,每位獻愛心的參與者投幣20元有一次摸獎機會,一次性從箱子中摸球三個(摸完球后將球放回),若有一個紅球,獎金10元,兩個紅球獎金20元,三個全是紅球獎金100元.
(1)求獻愛心參與者中將的概率;
(2)若該次募捐900位獻愛心參與者,求此次募捐所得善款的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1(-c,0),F2(c,0),直線
交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標準方程與離心率;
(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com