精英家教網 > 高中數學 > 題目詳情

【題目】某旅游為了解2015年國慶節期間參加某境外旅游線路的游客的人均購物消費情況,隨機對50人做了問卷調查,得如下頻數分布表:

人均購物消費情況

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

額數

15

20

9

3

3

附:臨界值表參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d.

(1)做出這些數據的頻率分布直方圖并估計次境外旅游線路游客的人均購物的消費平均值;
(2)在調查問卷中有一項是“您會資助失學兒童的金額?”,調查情況如表,請補全如表,并說明是否有95%以上的把握認為資助數額多于或少于500元和自身購物是否到4000元有關?

人均購物消費不超過4000元

人均購物消費超過4000元

合計

資助超過500元

30

資助不超過500元

6

合計

【答案】
(1)解:作出頻率分布直方圖如圖所示:

人均購物消費平均值 =(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.


(2)解:2×2列聯表如下:

人均購物消費

不超過4000元

人均購物消費

超過4000元

合計

資助超過500元

30

9

39

資助不超過500元

5

6

11

合計

35

15

50

K2= =4.046>3.841.

∴由95%的把握認為資助數額多余或少于500元與自身購物是否到4000元有關


【解析】(1)根據消費情況計算各組的頻率及頻率分布直方圖的高度作圖;(2)列聯表計算K2 , 根據附表進行判斷.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,求函數的單調區間.

(2)當時,討論函數圖象的交點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為矩形,且的中點.

(1)過點作一條射線,使得,求證:平面 平面;

(2)求二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的是(
A.若ξ服從正態分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知下表為函數部分自変量取值及其對應函數值,為了便于研究,相關函數值取非整數值時,取值精確到0.01.

0.61

-0.59

-0.56

-0.35

0

0.26

0.42

1.57

3.27

0.07

0.02

-0.03

-0.22

0

0.21

0.20

-10.04

-101.63

據表中數據,研究該函數的一些性質;

(1)判斷函數的奇偶性,并證明;

(2)判斷函數在區間[0.55,0.6]上是否存在零點,并說明理由;

(3)判斷的正負,并證明函數上是單調遞減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)證明:;

(2)若對任意,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校有150名學生參加了中學生環保知識競賽,為了解成績情況,現從中隨機抽取50名學生的成績進行統計(所有學生成績均不低于60分).請你根據尚未完成的頻率分布表,解答下列問題:

(1)寫出M 、N 、p、q(直接寫出結果即可),并作出頻率分布直方圖;

(2)若成績在90分以上學生獲得一等獎,試估計全校所有參賽學生獲一等獎的人數;

(3)現從所有一等獎的學生中隨機選擇2名學生接受采訪,已知一等獎獲得者中只有2名女生,求恰有1名女生接受采訪的概率.

分組

頻數

頻率

第1組

[60,70)

M

0.26

第2組

[70,80)

15

p

第3組

[80,90)

20

0.40

第4組

[90,100]

N

q

合計

50

1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分) 命題實數x滿足(其中),命題實數滿足

)若,且為真,求實數的取值范圍;

)若 的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設復數z滿足zi=2﹣i,i為虛數單位,
p1:|z|= ,
p2:復數z在復平面內對應的點在第四象限;
p3:z的共軛復數為﹣1+2i,
p4:z的虛部為2i.
其中的真命題為(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视