精英家教網 > 高中數學 > 題目詳情

水車問題.

水車是一種利用水流的動力進行灌溉的工具,下圖是一個水車的示意圖,它的直徑為3 m,其中心(即圓心)O距水面1.2 m.如果水車每4 min逆時針轉3圈,在水車輪邊緣上取一點P,我們知道在水車勻速轉動時,P點距水面的高度h(m)是一個變量,顯然,它是時間t(s)的函數.我們知道,h與t的函數關系反映了這個周期現象的規律.為了方便,不妨從P點位于水車與水面交點Q時開始記時(t=0).

  首先,設法用解析式表示出這個函數關系,并用“五點法”作出這個函數在一個周期內的簡圖.

  其次,我們討論如果雨季河水上漲或旱季河流水量減少時,所求得的函數解析式中的參數將發生哪些變化?若水車轉速加快或減慢,函數解析式中的參數又會受到怎樣的影響?

答案:
解析:

  解:不妨設水面的高度為0,當P點旋轉到水面以下時,P點距水面的高度為負值.

  如圖,設水車的半徑為R,R=1.5 m,水車中心到水面的距離為b,b=1.2 m;∠QOP為α;

  水車旋轉一圈所需的時間為T;單位時間(s)旋轉的角度(rad)為

  過P點向水面作垂線,交水面于M點,PM的長度為P點的高度h.

  過水車中心O作PM的垂線,交PM于N點,∠QON為φ

  從圖中不難看出:h=PM=PN+NM=Rsin(α-φ)+b.①

  用ω表示單位時間(s)內水車轉動的角度(rad),這樣,在t時刻水車轉動的角度為:α=ωt.

  因為單位時間內水車轉動的角度是ω,所以轉一圈所用的時間T=

  又由于水車輪每4 min轉3圈,水車旋轉一圈所需時間為T=80 s,可求出ω=rad/s.

  從圖中可以看出:sinφ,

  所以φ≈53.1°≈0.295π rad.

  把這些參數代入①,我們就可以得到h=1.5 sin(t-0.295π)+1.2(m),②

  這就是P點距水面的高度h關于時間t的函數關系式.

  因為當P點旋轉到53.1°時,P點到水面的距離恰好是1.2(m),此時t=≈11.8(s).

  故可列表、描點,畫出函數在區間[11.8,918.]上的簡圖:

  如果雨季河水上漲或旱季河流水量減少,將造成水車中心O與水面之間的距離發生改變,而使函數解析式中所加參數b發生變化.水面上漲時,參數b減小;水面回落時,參數b增大.如果水車輪轉速加快,將使周期T減;轉速減慢,則使周期T增大.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

水車問題.

水車是一種利用水流的動力進行灌溉的工具,圖1-6-5是一個水車的示意圖,它的直徑為3 m,其中心(即圓心)O距水面1.2 m.如果水車每4 min逆時針轉3圈,在水車輪邊緣上取一點P,我們知道在水車勻速轉動時,P點距水面的高度h(m)是一個變量,顯然,它是時間t(s)的函數.我們知道,h與t的函數關系反映了這個周期現象的規律.為了方便,不妨從P點位于水車與水面交點Q時開始記時(t=0).

首先,設法用解析式表示出這個函數關系,并用“五點法”作出這個函數在一個周期內的簡圖.

圖1-6-5

其次,我們討論如果雨季河水上漲或旱季河流水量減少時,所求得的函數解析式中的參數將發生哪些變化?若水車轉速加快或減慢,函數解析式中的參數又會受到怎樣的影響?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视