精英家教網 > 高中數學 > 題目詳情
橢圓的離心率為
1
2
,一個焦點為F(3,0)對應準線為x-1=0,則這個橢圓方程是______.
e=
1
2
,a=2c
設中心是(m,0),準線x=1,
因為橢圓中焦點比準線離中心更近,所以中心在(3,0)右邊,所以m>3,則c=焦點到中心距離=m-3
準線到中心距離=
a2
c
=m-1
,所以
a2
c
-c=2
,所以
4c2
c
-c=2
,∴c=
2
3
,∴a=
4
3
,b2=
4
3
,m=c+3=
11
3

所以橢圓3x2+4y2-22x+35=0,
故答案為:3x2+4y2-22x+35=0.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為
1
2
.點C在x軸上,BC⊥BF,B,C,F三點確定的圓M的半徑為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點A的直線l與圓M交于P、Q兩點,且
MP
MQ
=-2
求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(
3
2
,1)
在橢圓Q:
y2
a2
+
x2
b2
=1(a>b>0)
上,且該橢圓的離心率為
1
2

(1)求橢圓Q的方程;
(2)若直線l與直線AB:y=-4的夾角的正切值為2,且橢圓Q上的動點M到直線l的距離的最小值為
5
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓Ω的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過點(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過直線l:x=4上點M引橢圓Ω的兩條切線,切點分別為A,B,求證:直線AB恒過定點C;
②是否存在實數λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,且OA⊥OB(其中O為坐標原點).
(1)若橢圓的離心率為
1
2
,求橢圓的方程;
(2)求證:不論a,b如何變化,橢圓恒過第一象限內的一個定點P,并求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N (M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视