【題目】某化工廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產1扯皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數如表所示:
配料 原料 | A | B | C |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
現有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車品乙種肥料,產生的利潤為3萬元、分別用x,y表示計劃生產甲、乙兩種肥料的車皮數.
(1)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(2)問分別生產甲、乙兩種肥料,求出此最大利潤.
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續購買該險種的投保人稱為續保人,續保人的本年度的保費與其上年度的出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 |
|
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續保人一年內出險次數與相應概率如下:
一年內出險次數 | 0 | 1 | 2 | 3 | 4 |
|
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0. 05 |
(1)求一續保人本年度的保費高于基本保費的概率;
(2)若一續保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x +bx,曲線y=f(x)在點 (2,f(2))處的切線方程為y=(e-1)x+4,
(1)求a,b的值;
(2)求f(x)的單調區間。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,M,N,K分別是正方體ABCD—A1B1C1D1的棱AB,CD,C1D1的中點.
求證:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5.
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)數列{bn}的前n項和為Sn,求證:數列{Sn+}是等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設等比數列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數據分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是( )
A.56
B.60
C.120
D.140
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間為了規定工時定額,需確定加工零件所花費的時間,為此做了4次試驗,得到的數據如下:
零件的個數 | 2 | 3 | 4 | 5 |
加工的時間 | 2.5 | 3 | 4 | 4.5 |
若加工時間與零件個數
之間有較好的相關關系.
(1)求加工時間與零件個數的線性回歸方程.
(2)試預報加工10個零件需要的時間.
附錄:參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形
所在的平面互相垂直,
,且
,
是
的中點.
(1)求證: 平面
;
(2)求面與面
所成銳二面角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com