精英家教網 > 高中數學 > 題目詳情

【題目】已知數列中,,設

(1)求證:數列是等比數列;

(2)設數列的前項和為,求滿足的最小值.

【答案】(1)證明見解析;(2)10.

【解析】

(1)將數列的遞推公式變形,可得an+1-1=2(an-1),即可得到結論;(2)先求數列{an}的通項公式;利用分組求和,求前n項和,通過不等式可得n的最值.

(1)證明:∵an+1=2an﹣1(n∈N*),∴an+1﹣1=2(an﹣1),a1=3,

∴{an-1}是以a1﹣1=2為首項,2為公比的等比數列;

即數列{bn}是等比數列;

(2)由(1)知,an﹣1=2n,∴an=2n+1;

數列{an}的前n項和為Sn+n=2n+1﹣2+n

Sn>2019,可得,

滿足Sn>2019的n的最小值n=10.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數大于的四邊形),.

(1)若,求;

(2)已知,記四邊形的面積為.

① 求的最大值;

② 若對于常數,不等式恒成立,求實數的取值范圍.(直接寫結果,不需要過程)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數據:

0

1

2

3

0

0.7

1.6

3.3

為描述該超級快艇每小時航行費用Q與速度v的關系,現有以下三種函數模型供選擇:Qav3bv2cv,Q=0.5vaQklogavb

(1)試從中確定最符合實際的函數模型,并求出相應的函數解析式;

(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是 的中點.(12分)
(Ⅰ)設P是 上的一點,且AP⊥BE,求∠CBP的大小;
(Ⅱ)當AB=3,AD=2時,求二面角E﹣AG﹣C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小威初三參加某高中學校的數學自主招生考試,這次考試由十道選擇題組成,得分要求是:做對一道題得1分,做錯一道題扣去1分,不做得0分,總得分7分就算及格,小威的目標是至少得7分獲得及格,在這次考試中,小威確定他做的前六題全對,記6分,而他做余下的四道題中,每道題做對的概率均為p考試中,小威思量:從余下的四道題中再做一題并且及格的概率;從余下的四道題中恰做兩道并且及格的概率,他發現,只做一道更容易及格.

(1)設小威從余下的四道題中恰做三道并且及格的概率為,從余下的四道題中全做并且及格的概率為,;

(2)由于p的大小影響,請你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在邊長為1的正方體中,E,F,G,H分別為A1B1 , C1D1 , AB,CD的中點,點P從G出發,沿折線GBCH勻速運動,點Q從H出發,沿折線HDAG勻速運動,且點P與點Q運動的速度相等,記E,F,P,Q四點為頂點的三棱錐的體積為V,點P運動的路程為x,在0≤x≤2時,V與x的圖象應為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F為CE的中點,
(1)求證:AE∥平面BDF;
(2)求證:平面BDF⊥平面ACE;
(3)2AE=EB,在線段AE上找一點P,使得二面角P﹣DB﹣F的余弦值為 , 求AP的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】3名男生、3名女生站成一排:

(1)女生都不站在兩端,有多少不同的站法?

(2)三名男生要相鄰,有多少種不同的站法?

(3)三名女生互不相鄰,三名男生也互不相鄰,有多少種不同的站法?

(4)女生甲,女生乙都不與男生丙相鄰,有多少種不同的站法?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且函數是偶函數,設

(1)求的解析式;

(2)若不等式≥0在區間(1,e2]上恒成立,求實數的取值范圍;

(3)若方程有三個不同的實數根,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视