精英家教網 > 高中數學 > 題目詳情

【題目】數列{an}滿足a1= ,an+1=an2﹣an+1(n∈N*),則m= + +…+ 的整數部分是(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:由題設知,an+1﹣1=an(an﹣1),
= = ,
,
通過累加,得
m= + +…+ = =2﹣
由an+1﹣an=(an﹣1)2≥0,
即an+1≥an ,
, ,a3=
∴a2015≥a2014≥a2013≥…≥a3>2,
∴a2005﹣1>1,
∴0< <1,
∴1<m<2,
所以m的整數部分為1.
故選B.
【考點精析】利用數列的前n項和對題目進行判斷即可得到答案,需要熟知數列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在三棱錐P﹣ABC中,D為AB的中點.

(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數分鐘,經統計以往為100位顧客準備泡茶工具所需的時間(t),結果如下:

類別

鐵觀音

龍井

金駿眉

大紅袍

顧客數(人)

20

30

40

10

時間t(分鐘/人)

2

3

4

6

注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務員恰好在第6分鐘開始準備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準備好了工具的顧客人數,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設z1 , z2是復數,則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區域D是所有滿足 = (1<λ≤a,1<μ≤b)的點P(x,y)組成的區域.若區域D的面積為8,則4a+b的最小值為 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (﹣3x2+3f′(2))dx,則f′(2)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ex﹣ax2 , 曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ex﹣ax2 , 曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且滿足csinA=acosC,
(1)求角C的大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時角A,B的大小.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视