精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}的前n項和為Sn , 且a2an=S2+Sn對一切正整數n都成立.
(1)求a1 , a2的值;
(2)設a1>0,數列{lg }的前n項和為Tn , 當n為何值時,Tn最大?并求出Tn的最大值.

【答案】
(1)解:當n=1時,a2a1=S2+S1=2a1+a2

當n=2時,得

②﹣①得,a2(a2﹣a1)=a2

若a2=0,則由①知a1=0,

若a2≠0,則a2﹣a1=1④

①④聯立可得

綜上可得,a1=0,a2=0或


(2)解:當a1>0,由(Ⅰ)可得

當n≥2時,

(n≥2)

=

由(1)可知 = =

∴{bn}是單調遞減的等差數列,公差為﹣ lg2

∴b1>b2>…>b7=

當n≥8時,

∴數列 的前7項和最大, = =7﹣


【解析】(1)由題意,n=2時,由已知可得,a2(a2﹣a1)=a2 , 分類討論:由a2=0,及a2≠0,分別可求a1 , a2(2)由a1>0,令 ,可知 = = ,結合數列的單調性可求和的最大項
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數k的最小值;
(3)證明: (n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】請你幫忙設計2010年玉樹地震災區小學的新校舍,如圖,在學校的東北力有一塊地,其中兩面是不能動的圍墻,在邊界內是不能動的一些體育設施.現準備在此建一棟教學樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設計,才能使教學樓的面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中裝有個大小相同的黑球和白球.已知從袋中任意摸出個球,至少得到個白球的概率是.

(1)求白球的個數;

(2)從袋中任意摸出個球,記得到白球的個數為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業響應省政府號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.如圖是設備改造前的樣本的頻率分布直方圖,表是設備改造后的樣本的頻數分布表.

表:設備改造后樣本的頻數分布表

質量指標值

頻數

(1)完成下面的列聯表,并判斷是否有的把握認為該企業生產的這種產品的質量指標值與設備改造有關;

設備改造前

設備改造后

合計

合格品

不合格品

合計

(2)根據頻率分布直方圖和表 提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;

(3)企業將不合格品全部銷毀后,根據客戶需求對合格品進行登記細分,質量指標值落在內的定為一等品,每件售價元;質量指標值落在內的定為二等品,每件售價元;其它的合格品定為三等品,每件售價.根據表的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現有一名顧客隨機購買兩件產品,設其支付的費用為(單位:元),求的分布列和數學期望.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a為正實數,n為自然數,拋物線 與x軸正半軸相交于點A,設f(n)為該拋物線在點A處的切線在y軸上的截距.
(1)用a和n表示f(n);
(2)求對所有n都有 成立的a的最小值;
(3)當0<a<1時,比較 的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范圍;
(2)若g(x)是以2為周期的偶函數,且當0≤x≤1時,g(x)=f(x),求函數y=g(x)(x∈[1,2])的反函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為提高員工的綜合素質,聘請專業機構對員工進行專業技術培訓,其中培訓機構費用成本為12000元.公司每位員工的培訓費用按以下方式與該機構結算:若公司參加培訓的員工人數不超過30人時,每人的培訓費用為850元;若公司參加培訓的員工人數多于30人,則給予優惠:每多一人,培訓費減少10元.已知該公司最多有60位員工可參加培訓,設參加培訓的員工人數為人,每位員工的培訓費為元,培訓機構的利潤為元.

(1)寫出 之間的函數關系式;

(2)當公司參加培訓的員工為多少人時,培訓機構可獲得最大利潤?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()

(結果精確到0.1.參考數據:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视