【題目】
對函數Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數)為Φ(x)的第k階階梯函數,m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當Φ(x)=2x時 ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數圖象的最高點共線;
(2)若Φ(x)=x2,則是否存在正整數k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】將函數f(x)=cos(2x)的圖象向左平移
個單位長度后,得到函數g(x)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)
①g(x)的最小正周期為4π;
②g(x)在區間[0,]上單調遞減;
③g(x)圖象的一條對稱軸為x;
④g(x)圖象的一個對稱中心為(,0).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一樓房高為
米,某廣告公司在樓頂安裝一塊寬
為
米的廣告牌,
為拉桿,廣告牌的傾角為
,安裝過程中,一身高為
米的監理人員
站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監理人員不得站在廣告牌的正下方:設
米,該監理人員觀察廣告牌的視角
.
(1)試將表示為
的函數;
(2)求點的位置,使
取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l的方程為(a﹣1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標軸上截距的絕對值相等,求直線l的方程;
(2)若直線l不經過第一象限,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy內,點()在橢圓E:
(a>0,b>0),橢圓E的離心率為
,直線l過左焦點F且與橢圓E交于A、B兩點
(1)求橢圓E的標準方程;
(2)若動直線l與x軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為
,焦距為2,拋物線
的準線經過
的左焦點
.
(1)求與
的方程;
(2)直線經過
的上頂點且
與
交于
,
兩點,直線
,
與
分別交于點
(異于點
),
(異于點
),證明:直線
的斜率為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com