精英家教網 > 高中數學 > 題目詳情
(2007•嘉興一模)已知f(x)=
1
x2-4
(x<-2)
,f(x)的反函數為g(x),點A(an ,-
1
an+1
)
在曲線y=g(x)上(n∈N*),且a1=1
(Ⅰ)求y=g(x)的表達式;
(Ⅱ)證明數列{
1
an2
}為等差數列;
(Ⅲ)設bn=
1
1
an
+
1
an+1
,記Sn=b1+b2+…+bn,求Sn
分析:(Ⅰ)由y=
1
x2-4
得x2-4=
1
y2
,x<-2,從而可得f(x)的反函數y=g(x)的表達式;
(Ⅱ)點An(an-
1
an+1
)在曲線y=g(x)上(n∈N+)⇒-
1
an+1
=g(an)=-
4+
1
an2
,并且an>0,進一步整理得
1
an+12
-
1
an2
=4(n≥1,n∈N),由等差數列的定義即可證得數列{
1
an2
}為等差數列;
(Ⅲ)依題意,可求得an=
1
4n-3
,繼而可得bn=
4n+1
-
4n-3
4
,累加后,正負項相消即可.
解答:解:(Ⅰ)由y=
1
x2-4
得x2-4=
1
y2
,
∴x2=4+
1
y2

∵x<-2,
∴x=-
4+
1
y2
,
∴g(x)=-
4+
1
x2
(x>0)…(3分)
(II)∵點An(an-
1
an+1
)在曲線y=g(x)上(n∈N+),
-
1
an+1
=g(an)=-
4+
1
an2
,并且an>0,
1
an+1
=
4+
1
an2
,
1
an+12
-
1
an2
=4(n≥1,n∈N),
∴數列{
1
an2
}為等差數列 …(7分)
(III)∵數列{
1
an2
}為等差數列,并且首項為
1
a12
=1,公差為4,
1
an2
=1+4(n-1),
an2=
1
4n-3
,
∵an>0,
∴an=
1
4n-3
,…(10分)
bn=
1
1
an
+
1
an+1
=
1
4n-3
+
4n+1
=
4n+1
-
4n-3
4

∴Sn=b1+b2+…+bn=
5
-1
4
+
9
-
5
4
+…+
4n+1
-
4n-3
4
=
4n+1
-1
4
…(14分)
點評:本題考查數列的求和,著重考查反函數的概念與等差關系的確定,考查抽象思維與綜合運算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2007•嘉興一模)設an(n=2,3,4,…)是(3-
x
)n
的展開式中x的一次項的系數,則
32
a2
+
33
a3
+…+
318
a18
的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉興一模)
lim
x→1
x-1
x2-3x+2
=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉興一模)兩個正數a、b的等差中項是
5
2
,一個等比中項是
6
,且a>b,則雙曲線
x2
a2
-
y2
b2
=1
的離心率e等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉興一模)從4名男生和3名女生中選出4名代表參加一個校際交流活動,要求這4名代表中必須既有男生又有女生,那么不同的選法共有
34
34
種(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉興一模)已知函數f(x)=
sin2x-cos2x+1
2sinx

(Ⅰ)求f(x)的定義域;           
(Ⅱ)設α的銳角,且tan
α
2
=
1
2
,求f(α)的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视