【題目】已知關于的方程
的兩個根分別為
其中
,則
的取值范圍是( )
A. B.
C.
D.
【答案】A
【解析】設,則
是
的零點,
,
即
,作出平面區域如圖,
表示區域內的點
與
連線的斜率,
由圖象可知,當過的直線平行于
時,斜率最小為
,過
的直線與
軸平行時,斜率最大為
,故選A.
【方法點晴】本題主要考查一元二次方程根的分布,數學的轉化與劃歸思想以及線性規劃中利用可行域求目標函數的最值,屬難題.求目標函數最值的一般步驟是“一畫、二移(轉)、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移(旋轉)變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.解答本題的關鍵有兩點,一是將根的分布問題轉換為不等式問題,二是將不等式問題轉化為線性規劃問題.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項和為Sn , 且滿足a1=1,an+1=2 +1,n∈N* .
(1)求a2的值;
(2)求數列{an}的通項公式;
(3)是否存在正整數k,使ak , S2k﹣1 , a4k成等比數列?若存在,求k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從
開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數據顯示, 與
之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出
關于
的回歸直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且
,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為
,
為
的中點,
為線段
上的動點,過點
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫出所有正確命題的編號).
①當時,
為四邊形;②當
時,
為等腰梯形;
③當時,
與
的交點
滿足
;
④當時,
為五邊形;
⑤當時,
的面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
交于
、
兩點,以
為對角線作正方形
,記直線
與
軸的交點為
,問
、
兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=a﹣bcos(2x+ )(b>0)的最大值為3,最小值為﹣1.
(1)求a,b的值;
(2)當求x∈[ ,
π]時,函數g(x)=4asin(bx﹣
)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)判定AE與PD是否垂直,并說明理由.
(2)設AB=2,若H為PD上的動點,若△AHE面積的最小值為 , 求四棱錐P﹣ABCD的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com