【題目】已知函數f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( )
A.(2,+∞)
B.(1,+∞)
C.(-∞,-2)
D.(-∞,-1)
【答案】C
【解析】 ,令
,得
,
當 時,
,存在兩個零點,不合題意;
當 時,
,所以
在
上單調增,在
單調減,在
單調增, 所以當 時
取極小值,
取極大值,
,
時,
,此時必有一個負零點,不合題意;
當 時,
,
在
上為減函數,在
為增函數,在
為減函數,
為極大值點,
為極小值點,
,若f(x)存在唯一的零點x0,且x0>0,只需
,解得
,
所以答案是:C.
【考點精析】認真審題,首先需要了解函數的零點與方程根的關系(二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點),還要掌握函數的零點(函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】設集合A={x|log2(x+1)<2},B={y|y= },則(RA)∩B=( )
A.(0,3)
B.[0,4]
C.[3,4)
D.(﹣1,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了了解某地區電視觀眾對某類體育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖,將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據已知條件完成下面的 列聯表,并據此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
(參考公式 ,其中
.)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“魅力紅谷灘”才藝展示評比中,參賽選手成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如圖所示.
(1)根據圖中信息,將圖乙中的頻率分布直方圖補充完整;
(2)根據頻率分布直方圖估計選手成績的平均值(同一組數據用該區間的中點值作代表);
(3)從成績在[80,100]的選手中任選2人進行PK,求至少有1 人成績在[90,100]的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區域內,說明選用的模型比較合適;
②用相關指數R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;
③比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.
④在研究氣溫和熱茶銷售杯數的關系時,若求得相關指數R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數變化.
其中正確命題的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為 ,且點P在圖中陰影部分(包括邊界)運動.若
=x
+y
,其中x,y∈R,則4x﹣y的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設 表示三條不同的直線,
表示三個不同的平面,給出下列三個命題:①若
,則
;②若
,
是
在
內的射影,
,則
;③若
則
. 其中真命題的個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 為圓
上的動點,
的坐標為
,
在線段
上,滿足
.
(Ⅰ)求 的軌跡
的方程.
(Ⅱ)過點 的直線
與
交于
兩點,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com