精英家教網 > 高中數學 > 題目詳情

設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當面積最大時,求.

(1) ;(2).

解析試題分析:(1)由離心率得,由過點且與軸垂直的直線被橢圓截得的線段長為,再加橢圓中可解出,可得橢圓方程;(2)將直線方程設為,交點設出,然后根據題意算出的面積,令,所以當且僅當時等號成立,求出面積最大時的.
試題解析:(1)由題意可得,,又,解得,所以橢圓方程為               (4分)
(2)根據題意可知,直線的斜率存在,故設直線的方程為,設由方程組消去得關于的方程 (6分)由直線與橢圓相交于兩點,則有,即
由根與系數的關系得
        (9分)
又因為原點到直線的距離,
的面積
,所以當且僅當時等號成立,
時,              (12分)
考點:1.橢圓方程;2.橢圓與直線綜合;3.基本不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓經過點,.
(Ⅰ)求橢圓的方程;(Ⅱ)設為橢圓上的動點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

點P是橢圓外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標為,求直線的方程。
(2)設橢圓的左焦點為F,請問:當點P運動時,是否總是相等?若是,請給出證明。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關的常數?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線,點P(-1,0)是其準線與軸的焦點,過P的直線與拋物線C交于A、B兩點.
(1)當線段AB的中點在直線上時,求直線的方程;
(2)設F為拋物線C的焦點,當A為線段PB中點時,求△FAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點是橢圓上一點,分別為的左右焦點,的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線經過點,且雙曲線的漸近線與圓相切.
(1)求雙曲線的方程;
(2)設是雙曲線的右焦點,是雙曲線的右支上的任意一點,試判斷以為直徑的圓與以雙曲線實軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數.
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视