精英家教網 > 高中數學 > 題目詳情
已知數列:1
1
2
,3
1
4
,5
1
8
,7
1
16
的前n項和Sn=
n2+1-
1
2n
n2+1-
1
2n
分析:將Sn=1
1
2
+3
1
4
+5
1
8
+7
1
16
+…
分組為1+3+5+7+…+(2n-1)+(
1
2
+
1
4
+
1
8
+
1
16
+…+
1
2n
),再分別利用等差數列,等比數列求和公式計算.
解答:解:Sn=1
1
2
+3
1
4
+5
1
8
+7
1
16
+…

=1+3+5+7+…+(2n-1)+(
1
2
+
1
4
+
1
8
+
1
16
+…+
1
2n

=
2n×n
2
+
1
2
[1-(
1
2
)n]
1-
1
2

=n2+1-
1
2n

故答案為:n2+1-
1
2n
點評:本題考查數列求和,涉及到的方法為公式法、分組法.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數y=
1
4
x+
1
12
圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點,其中x1=a(0<a<1),對于任意n∈N,點An、Bn、An+1構成以
Bn為頂點的等腰三角形.
(1)求{yn}的通項公式,且證明{yn}是等差數列;
(2)試判斷xn+2-xn是否為同一常數(不必證明),并求出數列{xn}的通項公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時a值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=(k-4)x2+kx
 &(k∈R)
,對任意實數x,有f(x)≤6x+2恒成立;數列{an}滿足an+1=f(an).
(1)求函數f(x)的解析式和值域;
(2)試寫出一個區間(a,b),使得當a1∈(a,b)時,數列{an}在這個區間上是遞增數列,并說明理由;
(3)已知,是否存在非零整數λ,使得對任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>(-1)n-12λ+nlog32-1
-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數y=
1
4
x+
1
12
圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點,其中x1=a(0<a<1),對于任意n∈N,點An、Bn、An+1構成一個頂角的頂點為Bn的等腰三角形.
(1)求數列{yn}2的通項公式,并證明{yn}3是等差數列;
(2)證明xn+2-xn5為常數,并求出數列{xn}6的通項公式;
(3)問上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此時a值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2014•長寧區一模)設二次函數f(x)=(k-4)x2+kx
 (k∈R)
,對任意實數x,有f(x)≤6x+2恒成立;數列{an}滿足an+1=f(an).
(1)求函數f(x)的解析式和值域;
(2)證明:當an∈(0,
1
2
)
時,數列{an}在該區間上是遞增數列;
(3)已知a1=
1
3
,是否存在非零整數λ,使得對任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=-2x2+2x,數列{an}滿足an+1=f(an).
(1)試寫出一個區間(a,b),使得當a1∈(a,b)時,數列{an}在這個區間上是遞增數列,并說明理由;
(2)令bn=
1
2
-an
,試證明數列{lgbn+lg2}是等比數列
(3)已知,記Sn=log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)
,是否存在非零整數λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1對任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视