精英家教網 > 高中數學 > 題目詳情

.光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發,被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發被雙曲線反射后的反射光線等效于從另一個焦點發出;如題10圖,橢圓與雙曲線有公共焦點,現一光線從它們的左焦點出發,在橢圓與雙曲線間連續反射,則光線經過次反射后回到左焦點所經過的路徑長為

A.B.C.D.

D

解析考點:雙曲線的應用;橢圓的應用.
分析:根據題意,可知光線從左焦點出發經過橢圓反射要回到另一個焦點,光線從雙曲線的左焦點出發被雙曲線反射后,反射光線的反向延長線過另一個焦點,從而可計算光線經過2k(k∈N*)次反射后回到左焦點所經過的路徑長.

解:因為光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發,被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發被雙曲線反射后的反射光線等效于從另一個焦點發出
所以,光線從左焦點出發經過橢圓反射要回到另一個焦點,光線從雙曲線的左焦點出發被雙曲線反射后,反射光線的反向延長線過另一個焦點
如圖,AF2=2m+AF1,
BF1+BA+AF1=2a-AF2+AF1=2a-(2m+AF1)+AF1=2a-2m
所以光線經過2k(k∈N*)次反射后回到左焦點所經過的路徑長為2k(a-m)
故選D.

練習冊系列答案
相關習題

科目:高中數學 來源:海南省海南中學2010-2011學年高一下學期期末考試數學試題(1班) 題型:044

閱讀下列材料,解決數學問題.

圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發出的光線,經過雙曲線反射后,反射光線是發散的,它們好像是從另一個焦點射出的一樣,如圖所示.

反比例函數的圖像是以直線y=x為軸,以坐標軸為漸近線的等軸雙曲線,記作C.

(Ⅰ)求曲線C的離心率及焦點坐標;

(Ⅱ)如下圖,從曲線C的焦點F處發出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

查看答案和解析>>

科目:高中數學 來源:海南省10-11學年高一下學期期末考試數學(1班) 題型:解答題

(本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發出的光線,經過雙曲線反射后,反射光線是發散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.

(Ⅰ)求曲線C的離心率及焦點坐標;

(Ⅱ)如圖(2),從曲線C的焦點F處發出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

(1)           (2) 

 

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

(本題滿分12分)閱讀下列材料,解決數學問題.

圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發出的光線,經過雙曲線反射后,反射光線是發散的,它們好像是從另一個焦點射出的一樣,如右上圖所示.

反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.

(Ⅰ)求曲線C的離心率及焦點坐標;

(Ⅱ)如右下圖,從曲線C的焦點F處發出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

查看答案和解析>>

科目:高中數學 來源:海南省海南中學10-11學年高一下學期期末考試數學(1班) 題型:解答題

(本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發出的光線,經過雙曲線反射后,反射光線是發散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標;
(Ⅱ)如圖(2),從曲線C的焦點F處發出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1)          (2) 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视