【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.
【答案】
(1)證明:∵PA⊥平面ABCD,DA平面ABCD,
∴DA⊥PA,
又∵AC⊥AD,PA∩AC=A,
∴DA⊥面PAC,
又PC面PAC,∴DA⊥PC
(2)證明:過A作AM⊥PC交PC于M,連接DM,則∠AMD為所求角,
在Rt△PAC中,AM= ,
在Rt△DAM中,DM= ,
在Rt△AMD中,sin∠AMD= .
∴二面角A﹣PC﹣D的正弦值為 .
【解析】(1)推導出DA⊥PA,AC⊥AD,從而DA⊥面PAC,由此能證明DA⊥PC.(2)過A作AM⊥PC交PC于M,連接DM,則∠AMD為所求角,由此能求出二面角A﹣PC﹣D的正弦值.
【考點精析】掌握空間中直線與直線之間的位置關系是解答本題的根本,需要知道相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的傾斜角;
(2)設點,直線
和曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x﹣1)的圖象關于直線x=1對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f(
),則a,b,c的大小關系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設分別為橢圓
的左、右焦點,點
為橢圓
的左頂點,點
為橢圓
的上頂點,且
.
(1)若橢圓的離心率為
,求橢圓
的方程;
(2)設為橢圓
上一點,且在第一象限內,直線
與
軸相交于點
,若以
為直徑的圓經過點
,證明:點
在直線
上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列四個命題:
①“已知函數y=f(x),x∈ D,若D關于原點對稱,則函數y=f(x),x∈ D為奇函數”的逆命題;
②“對應邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數列{an}的通項公式;
(2)求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,已知橢圓C: =1(a>b>0)的離心率e=
,左頂點為A(﹣4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標;若不存在說明理由;
(3)若過O點作直線l的平行線交橢圓C于點M,求 的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com