【題目】集合A={x|x2﹣3x﹣4<0,x∈Z}用列舉法表示為
【答案】{0,1,2,3}
【解析】解:集合A={x|x2﹣3x﹣4<0,x∈Z}={x|﹣1<x<4,x∈Z}={0,1,2,3}.
所以答案是:{0,1,2,3}.
【考點精析】關于本題考查的集合的表示方法-特定字母法和解一元二次不等式,需要了解①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|
具有的性質},其中
為集合的代表元素.④圖示法:用數軸或韋恩圖來表示集合;求一元二次不等式
解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規律:當二次項系數為正時,小于取中間,大于取兩邊才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,已知多面體的底面
是邊長為2的正方形,
底面
,
,且
.
(Ⅰ)記線段的中點為
,在平面
內過點
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段。現將初賽答卷成績(得分均為整數,滿分為100分)進行統計,制成如下頻率分布表.
分數(分數段) | 頻數(人數) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)決賽規則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎。如果前三道題都答錯,就不再答第四題。某同學進入決賽,每道題答對的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學恰好答滿4道題而獲得一等獎的概率;
②記該同學決賽中答題個數為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a,b∈R,ab≠0,給出下面四個命題:①a2+b2≥﹣2ab;② ≥2;③若a<b,則ac2<bc2;④若
.則a>b;其中真命題有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司一年經銷某種商品,年銷售量400噸,每噸進價5萬元,每噸銷售價8萬元.全年進貨若干次,每次都購買x噸,運費為每次2萬元,一年的總存儲費用為2x萬元.
(1)求該公司經銷這種商品一年的總利潤y與x的函數關系;
(2)要使一年的總利潤最大,則每次購買量為多少?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F1,F2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且
.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=
|NF1|=…=a。類似地:P是橢圓
(a>b>0,xy≠0)上的動點,F1,F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且
,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為( 。
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com