【題目】在中,
比
長4,
比
長2,且最大角的余弦值是
,則
的面積等于______________.
【答案】
【解析】
由a比c長4,b比c長2,用c表示出a與b,可得出a為最大邊,即A為最大角,可得出cosA的值,由A為三角形的內角,利用特殊角的三角函數值求出A的度數,同時利用余弦定理表示出cosA,將表示出的a與b代入,并根據最大角的余弦值,得到關于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面積公式即可求出三角形ABC的面積.
根據題意得:a=c+4,b=c+2,則a為最長邊,
∴A為最大角,又cosA=,且A為三角形的內角,
,
整理得:,即(c3)(c+2)=0,
解得:c=3或c=2(舍去),
∴a=3+4=7,b=3+2=5,
則△ABC的面積S=bcsinA=
.
故答案為:.
科目:高中數學 來源: 題型:
【題目】已知動點到定點
的距離比
到定直線
的距離小1.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)過點任意作互相垂直的兩條直線
,分別交曲線
于點
和
.設線段
,
的中點分別為
,求證:直線
恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知點在橢圓
上,將射線
繞原點
逆時針旋轉
,所得射線
交直線
于點
.以
為極點,
軸正半軸為極軸建立極坐標系.
(1)求橢圓和直線
的極坐標方程;
(2)證明::中,斜邊
上的高
為定值,并求該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,過
且垂直于
軸的焦點弦的弦長為
,過
的直線
交橢圓
于
,
兩點,且
的周長為
.
(1)求橢圓的方程;
(2)已知直線,
互相垂直,直線
過
且與橢圓
交于點
,
兩點,直線
過
且與橢圓
交于
,
兩點.求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com