【題目】設函數,
,
,其中
是
的導函數.
(1)令,
,
,求
的表達式;
(2)若恒成立,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】分析:(1)求出的解析式,依次計算即可得出猜想;
(2)已知恒成立,即
恒成立.
設 (x≥0),
則φ′(x)==-
=
,
對 進行討論,求出
的最小值,令
恒成立即可;
詳解:
由題設得,g(x)= (x≥0).
(1)由已知,g1(x)=,
g2(x)=g(g1(x))==
,
g3(x)=,…,可得gn(x)=
.
下面用數學歸納法證明.
①當n=1時,g1(x)=,結論成立.
②假設n=k時結論成立,即gk(x)=.
那么,當n=k+1時,
gk+1(x)=g(gk(x))==
,
即結論成立.
由①②可知, 結論對n∈N+成立.
所以gn(x)=.
(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.
設φ(x)=ln(1+x)- (x≥0),
則φ′(x)==-
=
,
當a≤1時,φ′(x)≥0(僅當x=0,a=1時等號成立),
∴φ(x)在[0,+∞)上單調遞增,又φ(0)=0,
∴φ(x)≥0在[0,+∞)上恒成立,
∴a≤1時,ln(1+x)≥恒成立(僅當x=0時等號成立).
當a>1時,對x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上單調遞減,
∴φ(a-1)<φ(0)=0,
即a>1時,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.
綜上可知,a的取值范圍是(-∞,1].
科目:高中數學 來源: 題型:
【題目】某工廠今年1月、2月、3月生產某產品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產量,以這三個月的產量為依據,用一個函數模擬該產品的月產量,與月份
的關系,模擬函數可以選用二次函數或函數
、
、
為常數)已知四月份該產品的產量為1.37萬件,請問用以上哪個函數作模擬函數較好?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,,
是經過小城
的東西方向與南北方向的兩條公路,小城
位于小城
的東北方向,直線距離
.現規劃經過小城
修建公路
(
,
分別在
與
上),與
,
圍成三角形區域
.
(1)設,
,求三角形區域
周長的函數解析式
;
(2)現計劃開發周長最短的三角形區域,求該開發區域的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的分類垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數據統計如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率P;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設廚余垃圾在“廚余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分別為a、b、c,其中a>0,a+b+c=600. 當數據a、b、c的方差s2最大時,寫出a、b、c的值(結論不要求證明),并求出此時s2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數方程為 (t為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當a=2時,試求函數圖線過點(1,f(1))的切線方程;
(Ⅱ)當a=1時,若關于x的方程f(x)=x+b有唯一實數解,試求實數b的取值范圍;
(Ⅲ)若函數f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是異面直線,則以下四個命題:①存在分別經過直線
和
的兩個互相垂直的平面;②存在分別經過直線
和
的兩個平行平面;③經過直線
有且只有一個平面垂直于直線
;④經過直線
有且只有一個平面平行于直線
,其中正確的個數有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為選派一名學生參加全市實踐活動技能竟賽,A、B兩位同學在學校的學習基地現場進行加工直徑為20mm的零件測試,他倆各加工的10個零件直徑的相關數據如圖所示(單位:mm)
A、B兩位同學各加工的10個零件直徑的平均數與方差列于下表;
平均數 | 方差 | |
A | 20 | 0.016 |
B | 20 | s2B |
根據測試得到的有關數據,試解答下列問題:
(Ⅰ)計算s2B,考慮平均數與方差,說明誰的成績好些;
(Ⅱ)考慮圖中折線走勢情況,你認為派誰去參賽較合適?請說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
直線 的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
交于不同的兩點
,
.
(1)求實數 的取值范圍;
(2)已知 ,設點
,若
,
,
成等比數列,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com