已知數列(常數
),其前
項和為
(
)
(1)求數列的首項
,并判斷
是否為等差數列,若是求其通項公式,不是,說明理由;
(2)令的前n項和,求證:
科目:高中數學 來源: 題型:解答題
已知數列{an}滿足a1+a2+…+an=n2(n∈N*).
(1)求數列{an}的通項公式;
(2)對任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,
,
成等差數列?若存在,用k分別表示p和r(只要寫出一組);若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
己知各項均不相等的等差數列{an}的前四項和S4=14,且a1,a3,a7成等比數列.
(1)求數列{an}的通項公式;
(2)設Tn為數列的前n項和,若Tn≤
¨對
恒成立,求實數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
數列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數.
(1)當a2=-1時,求λ及a3的值.
(2)數列{an}是否可能為等差數列?若可能,求出它的通項公式;若不可能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在數列{an}和等比數列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求數列{bn}及{an}的通項公式;
(2)若cn=an·bn,求數列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設無窮數列的首項
,前
項和為
(
),且點
在直線
上(
為與
無關的正實數).
(1)求證:數列(
)為等比數列;
(2)記數列的公比為
,數列
滿足
,設
,求數列
的前
項和
;
(3)若(2)中數列{Cn}的前n項和Tn當時不等式
恒成立,求實數a的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com