精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,( 為實數),

1)討論函數的單調區間;

2)求函數的極值;

3)求證:

【答案】(1)在上單調遞增,在上單調遞減(2)在取得極大值,其極大值為.3)詳見解析

【解析】試題分析:(1)求導數得到,然后討論a的符號,從而可判斷導數符號,這樣即可求出每種情況下函數fx)的單調區間;(2)可先求出函數gx)的定義域,然后求導,判斷導數的符號,從而根據極值的概念求出函數gx)的極值;(3)可知a=1時,fx)在x=0處取得極小值,從而可得出,而由(2)可知gx)在x=1處取得極大值,也是最大值-1,這樣即可得出lnx≤x-1x,這樣便可得出要證的結論

試題解析:(1)由題意得

時, 恒成立,函數R上單調遞增,

時,由可得,由可得,

故函數上單調遞增,在上單調遞減.

2)函數的定義域為, ,

可得;由,可得.

所以函數上單調遞增,在上單調遞減,

故函數取得極大值,其極大值為.

時, ,由(1)知, 處取得極小值,也是最小值,且,故,得到.

由(2)知, 處取得最大值,且,

,得到.

綜上.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在四棱柱,側棱底面 , ,且, , ,側棱.

(1)若上一點,試確定點的位置,使平面;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)證明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在遂寧市中央商務區的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、2只白色的乒乓球(其體積,質地完全相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得統一顏色的3個球,攤主送個摸球者10元錢;若摸得非同一顏色的3個球。摸球者付給攤主2元錢。

(1)摸出的3個球中至少有1個白球的概率是多少?

(2)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

1)當時,試比較的大小關系;

2)猜想的大小關系,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l經過點,則

1)若直線lxy軸的正半軸分別交于A、B兩點,且OAB的面積為4,求直線l的方程;

2若直線l與原點距離為2,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設各項均為正數的數列的前n項和為,滿足,,公比大于1的等比數列滿足, .

1求證數列是等差數列,并求其通項公式

2,求數列的前n項和;

3)在(2)的條件下,若對一切正整數n恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x) (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.

(1)k的值及f(x)的表達式;

(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率,左、右焦點分別為, ,點滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點、,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视